Infinite series and modular rings

J. V. Leyendekkers and A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 11, 2005, Number 3, Pages 7—14
Download full paper: PDF, 161 Kb

Details

Authors and affiliations

J. V. Leyendekkers
The University of Sydney, 2006 Australia

A. G. Shannon
Warrane College, Kensington, NSW 1465,
& KvB Institute of Technology, North Sydney, NSW 2060, Australia

Abstract

Thirteen convergent infinite series have been analysed in terms of modular rings. Thie enables one to assess the contribution of different categories of integers to the infinite series. One class of even integers contributes 1/6(π/4)2 to a zeta-function with exponent 2. Another class of even integers makes one quarter the contribution of all the integers to this series.

References

  1. KIM, T., JANG, L.C., & ADIGA, C., A Note on q-Euler Numbers, International Journal of Mathematical Education in Science & Technology. In press.
  2. CONWAY, J.H., & GUY, R.K., The Book of Numbers. New York: Copernicus, 1996.
  3. SMALE, S., Mathematical Problems for the Next Century , Mathematical Intelligencer, 20(2) 1998: 7-15.
  4. RIEMANN, B., Ũber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber.Königl. Preuss. Akad.Wiss. Berlin, 1859: 671-680.
  5. APOSTOL, T. M., Introduction to Analytic Number Theory. Berlin: Springer-Verlag, 1980.
  6. EDWARDS, H. M.,, Riemann’s Zeta Function. New York: Academic Press, 1974.
  7. Effinger, G., Hicks, K., & Mullen, G.L., Integers and Polynomials: Comparing the Close Cousins Z and Fq[x], The Mathematical Intelligencer 27 (2) 2005: 26-34.
  8. HILLMAN, A.P, & ALEXANDERSON, G.L. , A First Undergraduate Course in Abstract Algebra. Belmont: Wadsworth, 1973.
  9. LEYENDEKKERS, J. V., RYBAK, J.M., & SHANNON, A. G., Integer Class Properties Associated with an Integer Matrix, Notes on Number Theory & Discrete Mathematics, 1, 1995: 53-59.
  10. LEYENDEKKERS, J. V., RYBAK, J.M., & SHANNON, A. G., Analysis of Diophantine Properties Using Modular Rings with Four and Six Classes, Notes on Number Theory & Discrete Mathematics, 3, 1997: 61-74.
  11. LEYENDEKKERS, J. V., & SHANNON, A. G., Some Characteristics of Primes within Modular Rings, Notes on Number Theory & Discrete Mathematics, 9, 2003: 49-58.
  12. LEYENDEKKERS, J. V., & SHANNON, A. G., Powers as Differences of Squares: The Effect on Triples, Notes on Number Theory & Discrete Mathematics, 8, 2002: 95-106.

Related papers

Cite this paper

APA

Leyendekkers, J. V., and Shannon, A. G. (2005). Infinite series and modular rings. Notes on Number Theory and Discrete Mathematics, 11(3), 7-14.

Chicago

Leyendekkers, JV, and AG Shannon. “Infinite Series and Modular Rings.” Notes on Number Theory and Discrete Mathematics 11, no. 3 (2005): 7-14.

MLA

Leyendekkers, JV, and AG Shannon. “Infinite Series and Modular Rings.” Notes on Number Theory and Discrete Mathematics 11.3 (2005): 7-14. Print.

Comments are closed.