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Thirteen convergent infinite series have been analysed in terms of 
modular rings.  This enables one to assess the contribution of different 
categories of integers to the infinite series.  One class of even integers 
contributes ( )246

1 π to a zeta-function with exponent 2. Another class of 
even integers makes one quarter the contribution of all the odd integers 
to this series. 
 
 

1. Introduction 
The concept of infinity has intrigued philosophers and mathematicians for thousands 

of years with questions such as “how can we add an infinity of quantities and arrive at a 
finite answer?”  In fact, many such convergent infinite series have been developed.   

Probably the one of most current interest to professionals and amateurs alike is the 
zeta-function: 
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In particular, the complex zeros of the Riemann zeta-function are presumed to induce the 
local variations in the distributions of the primes.  q-generalizations of the zeta function 
have been explored in the context of enrichment work by Kim et al [1]. Hence, this zeta-
function has received an enormous amount of attention in order to prove the Riemann 
Hypothesis which is that all the nontrivial zeros (the values of n other than -2,-4,-6,…) of 
the zeta-function have real part ½; that is, the values of s other than -2,-4,-6,… such that 
ς(s) =0 all lie on the critical line σ = R(s) = 2

1 . 
“Riemann’s ‘hypothesis’ is the most tantalizing of the unsolved problems of 

mathematics” [2].  It is the number one problem for the 21st century according to Smale 
[3]. 

Riemann [4] developed a clever method for connecting the distribution of primes 
to properties of the function ( )sς . Apostol [5] has an introduction to the relevant analytic 
number theory, and Edwards [6] has an exposition of some of the early large-scale calcu-
lation attacks on the problem. 

In this paper we use modular rings to describe some of these series in terms of in-
teger structure so that the composition of the series can be analysed.  This opens up exer-
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cises and projects for both secondary and tertiary students of mathematics, especially 
those preparing to become mathematics teachers. 
 The approach we take is somewhat analogous to that of Effinger, Hicks and Mul-
len [7] who “contrast and compare the ring of integers and the ring of polynomials in a 
single variable over a finite field”.  The notation we adopt is based on the classic text of 
Hillman and Alexanderson [8]. 
  

2. Modular Rings 
Two rings will be used here, namely 4Z and 6Z , which contain four and six classes 

respectively [7,8]. 
 

4Z  

The integers in this modular ring may be represented by iri +4 , in which i is the class 
and ir can be considered as the row in an array with the four classes as columns. Even 

integers occur in Classes )4(0 04 r and )24(2 24 +r with .,...3,2,1,020 =rr  There are no 

powers in Class 42 .  Odd integers occur in Classes )14(1 14 +r and )34(3 34 +r with 

.,...3,2,1,0, 31 =rr There are no even powers in Class .34  Characteristics of the squares of 
the odd integers are given in Table 1 [9,10]. 
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Table 1: Square functions for the odd integers 
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6Z  

Integers in this ring are given by ( )( )36 −+ iri  (Table 2).  The even integers occur in 

Classes .5,3,1 666   All integers in 63  have 3|N, and there are no even powers in Class 65 .  
The odd integers occur in Classes 666 6,4,2 . All integers in 66 have 3|N, while there are 
no even powers in Class 62 . 
Class → 
Row ↓ 

61  62  63  64  65  66  

0 −2 −1 0 1 2 3 
1 4 5 6 7 8 9 
2 10 11 12 13 14 15 
3 16 17 18 19 20 21 
4 22 23 24 25 26 27 
5 28 29 30 31 32 33 

Table 2: Integers in 6Z  
 

The classification of the various integers in these rings allows a more detailed analysis of 
infinite series since the contributions of the different classes can be readily assessed.  
Some examples which cover various infinite series are given in the next section. 
 

3. Infinite Series 
 Table 3 lists some convergent infinite series.  The aim here is to interpret these in 
terms of integer structure with the modular rings 4Z and 6Z . 
Type Series Value 

A ...4/13/12/11/1 2222 ++++  )2(6/2 ζπ =  
B ...10/18/17/15/14/12/11 −+−+−+−  33/π  
C ( ) ( ) ( ) ( ) ...8/17/16/15/14/13/12/11/1 22222222 +×+×+×+×  )(),( 64 ZSZS

  
D ...441225819

...440224808
××××
××××  2/3  

E ...64/132/116/18/14/12/1 ++++++  1 
F ...99775533

...88664422
××××××××
××××××××  2/π  

G ...13/111/19/17/15/13/11 −+−+−+−  4/π  
H ( ) ( ) ( ) ( ) ...27/125/123/121/1 7531 +×−×+×−×  

( ) ( ) ( ) ( ) .37/135/133/131/1 7531 +×−×+×−×+ ..+… 

4/π  

I ( ) ( ) ( ) ( ){ }...57/155/153/151/14 7531 +×−×+×−×  
- ( ) ( ) ( ) ( ){ }...2397/12395/12393/12391/1 7531 +×−×+×−× +… 

4/π  

J ( ) ( ) ( ) ( ) ...1513/1119/175/131/1 +×+×+×+×  8/π  
K ...90/156/130/112/12/1 +++++  2ln  
L ...3 575

576
323
324

143
144

35
36 ×××××  π  

M ( ) ( ) ( ) ( ) ( ) ...76/165/154/143/132/1 +×+×+×+×+×  1/2 
Table 3: Some convergent infinite series 
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Series A 
Using 4Z we can distinguish among the sums for the different classes of integers. 
 
In 40 , the integers are represented by ,4 0rN = so that 2
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The result shows that integers in this class are linked to the Euler and Machin Series (H 
and I respectively in Table 3). 
 
In 42 , 24 2 += rN , and ( ) ,124 2

2
2 += rN so that the sum becomes 
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which is one quarter the sum of the corresponding odd integers in Classes 41 and 43 . 
 
In 41 , 14 1 += rN and 14 1

2 += RN and the squares have three functions (Table 1).  For 
41 these are 
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Of course, the simple sum 
 

 
also applies, but this fails to discriminate among the different types of integers within this 
class (Table 1). 
 
In 43 , 34 3 += rN , but 14 1

2 += RN , as there are no even powers in this class.  As in 41 , 
the squares follow the three functions in Table 1 with reversed parity for n. 
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( ) .
1)13)(16(8

1
1)56)(1(24

1
1)26)(12(12

13
0

4 ∑
∞

= +++
+

+++
+

+−−
=

n nnnnnn
S  

 
As for class 41 , there is a simple but restrictive sum: 
 

( ) ∑
∞

= +
=

0
24

)34(
13

r r
S . 

As can be seen from Table 1, the class structure in 6Z is simpler than in 4Z , at least for 
the squares, so that only one function applies for each of the three classes of odd integers.  
 
Series B 
This sum obviously excludes the integers N such that 3|N. Hence , the modular ring 

6Z is the most appropriate for any analysis, with integers of 

type 66)36( ∈+r and 63 36 ∈r being excluded and with ( )iN/1 following the pattern 

6666 5421 for N; that is, each set of consecutive four-sum-components may be represented 
by 
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and, since 5421 rrrr === , the series may be expressed as 
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For 6Z  we have the Class sequence 
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Series D 
For 4Z , this becomes 
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Series E 
Here 44
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In terms of the 4Z  class structure 
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For ,6Z the structure is 
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For 4Z  this sum becomes 
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Series H and I 

These may be expressed as ( )( ) 2
1

406S .  Readers might like to express these series in terms 
of the rows { }64 , ZZr ∈ . 
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This series is actually Series G.  If we use 6Z we get 
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Series K 
This series is related to Series C.  Both are specific cases of the more general  
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The class structure in 4Z here has the form  
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which is repeated with changing row, and so 
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Series L 
Here all the elements of the numerator belong to .3 66 Z∈  Hence 
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This can be compared with Series F and its more complicated structure. 



  14  

 
Series M 
The class structure here is 
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which can be compared with E. 
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