J. Sándor and L. Tóth

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 7, 2001, Number 1, Pages 6—9

**Download full paper: PDF, 140 Kb**

## Details

### Authors and affiliations

J. Sándor

*Babes-Bolyai University, Cluj, ROMANIA*

L. Tóth

*Janus-Pannonius University, Pecs, HUNGARY*

### Abstract

In what follows we shall study certain arithmetic functions with application to the study of some trigonometrical products.

### References

- I. Crenga. et al., Introduction to the Theory of Numbers, Bucharest, 1965 (in

Romanian). - M. Deaconescu and J. Sandor, On the cyclomatic polynomial. Algebra. National

conference, Timisoara, June 1986. - S. W. Golomb, The lambda method in prime number theory, J. Number Theory, 2, 1970, 193-198.
- E. Gyarmati and P. Turan, A Course in Number Theory, Budapest, 1980 (in

Hungarian). - G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Oxford, 1968.
- I. Niven and H. S. Zuckerman, Bevezetes a szamelmeletbe, Mriszaki K., Budapest,

1978. - L. Panaitopol, Proposed Problem 2, Gaz. Mat. Perf. Met. 3-4. 1985, 192.
- G. Polya and G. Szego, Anfgaben und Lehrsatze aus der Analysis, Leipzig, 1924.
- I. Z. Ruzsa. Arithmetical functions. Mat. Lapok, Budapest,27, 1976-79, 95-145.
- Gh. Siretchi, Differential and Integral Calculus, Vol. II, Bucharest, 1985 (in

Romanian). - L. Toth. An arithmetical functions, Sem. “Didactica Mat.”, 1984-1985, Cluj, Romania (in Romanian).

## Related papers

## Cite this paper

APASándor, J. & Tóth, L. (2001). On arithmetic functions and a trigonometrical product. Notes on Number Theory and Discrete Mathematics, 7(1), 6-9.

ChicagoSándor, J. and Tóth, L. “On arithmetic functions and a trigonometrical product.” Notes on Number Theory and Discrete Mathematics 7, no. 1 (2001): 6-9.

MLASándor, J. and Tóth, L. “On arithmetic functions and a trigonometrical product.” Notes on Number Theory and Discrete Mathematics 7.1 (2001): 6-9. Print.