Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 2, 1996, Number 4, Pages 21–26
Full paper (PDF, 329 Kb)
Details
Authors and affiliations
Krassimir T. Atanassov
Math. Research Lab., P.O.Box 12,
Sofia – 1113, Bulgaria
References
- Nagel T., Introduction to number theory, John Wiley & Sons, Inc., New York.
- Atanassov K., One extremal problem. 2. Bull. of Number Theory and Related Topics Vol. IN (1985), No. 2. 11-13.
- Atanassov K., Vasilev M., An extremal problem. 3. Bull. of Number Theory and Related Topics Vol. X (1986), No. 1, 19-25.
- Atanassov E. , On the solutions of tx = ty + tz, Bull, of Number Theory and Related Topics, Vol. XVI, 1992, 57-59.
- Kudrevatov G., A book of problems in number theory, Nauka (Moscow), 1970 (in Russian).
- Atanassov K., On one problem for a rectangular parallelepiped with integer sides and its modifications, Proc. of Sci. Session of VIVU W. Tarnovo, 1988, 146-150 (in Bulgarian)
- Lal, M., Bludon, W., Solutions of Diophantine equations x2 + y2 = l2, y2 + z2 = m2, z2 + x2 = n2. Math. Comput., 1966, Vol. 20, No 93, 144-147.
- Colman W., Some observations on the classical cuboid and its parametric solutions, The Fib. Quar., 1988, Vol. 26, No. 3, 338-343.
- Chiao, K., On Diophantine equation n = x2 + y2 − z2, x2 ≤ n, y2 ≤ n, z2 ≤ n. Acta Scient. Natur., Univ. Szechuan, 1959, No. 6, 1-10 (in Chinese)
- Bradis V., Sicakov A. Despa triunghiurile heronice. Gaz. mat. si. fiz. 1969, All, No. 6, 325-334.
- Battaglia A., Formule parametriche per triangoii heroniami, Archimede, 1959, Vol. 11, No. 3, 163-167 .
- Atanassov K., On Heronus triangular problem and its modifications, Proc. of Sci. Session of VIVU, W. Tarnovo, 1988, 151-155.
- Popovich K., Heronus triangulars, Rev. math. pures et appl., Vol. 7, 1962, No. 3, 439-457.
Related papers
Cite this paper
Atanassov, K. T. (1996). A set-method for representation of the solutions of some Diophantine equations and some of its applications. Notes on Number Theory and Discrete Mathematics, 2(4), 21-26.