Aldo Peretti
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132
Volume 1, 1995, Number 3, Pages 105–110
Full paper (PDF, 3 Mb
Details
Authors and affiliations
Aldo Peretti
Universidad del Salvador
Buenos Aires, Argentina
Abstract
On the basis of a former paper [1], the author presents a simplified analytical way in order to determine the number of solutions of the Diophantine equation of the title.
References
- Peretti A., The Fermat equation (II), Bull. Number Theory, Vol XII (1988), 39-55.
- Landau E., Vorlesimgen uber Zahlentheoriе, VII Teil, Kap. 3, s 59, Chelasa edition.
- Gradshteyn I., Ryzhik I., Table of integrals, series and products, Academic Press – formula 4.6.35.2, 1965, p. 621.
- Nielsen N., Handbuch der Gammafimction, Kap. XII, § 67, 165-166.
- Peretti A., Euler’s Diophantine equation, Bull. Number Theory, Vol. XIII (1989), 39-50.
- Peretti A., The Diophantine equation xa+ уb = zc , Bull. Number Theory, Vol. XIV (1990), 25-35.
- Peretti A., About congruent numbers, Bull. Number Theory, Vol. XIII (1989), 105-123.
Related papers
Cite this paper
Peretti, A. (1995). The Fermat equation. III. Notes on Number Theory and Discrete Mathematics, 1(3), 105-110.