Factorial polynomials and associated number families

Alfred Schreiber
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 1, Pages 170–178
DOI: 10.7546/nntdm.2024.30.1.170-178
Full paper (PDF, 195 Kb)

Details

Authors and affiliations

Alfred Schreiber
Department of Mathematics and Mathematical Education, University of Flensburg
Auf dem Campus 1, D-24943 Flensburg, Germany

Abstract

Two doubly indexed families of polynomials in several indeterminates are considered. They are related to the falling and rising factorials in a similar way as the potential polynomials (introduced by L. Comtet) are related to the ordinary power function. We study the inversion relations valid for these factorial polynomials as well as the number families associated with them.

Keywords

  • Potential polynomials
  • Faà di Bruno polynomials
  • Factorial polynomials
  • Inverse relations
  • Stirling numbers
  • Lah numbers

2020 Mathematics Subject Classification

  • 05A10
  • 11B65
  • 11B73
  • 11B83
  • 11C08

References

  1. Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics, 35, 258–277.
  2. Boyadzhiev, K. N. (2008/2009). Power sum identities with generalized Stirling numbers. The Fibonacci Quarterly, 46/47(4), 326–330.
  3. Comtet, L. (1974). Advanced Combinatorics (Rev. and enlarged ed.). Reidel, Dordrecht, Holland.
  4. Hsu, L. C. (1993). A summation rule using Stirling numbers of the second kind. The Fibonacci Quarterly, 31(3), 256–262.
  5. Kim, D. S., Kim., T, Lee, S. H., & Park, J.-W. (2021). Some new formulas of complete and incomplete degenerate Bell polynomials. Advances in Difference Equations, 2021, Article 326.
  6. Knuth, D. E. (1992). Two notes on notation. The American Mathematical Monthly, 99, 403–422.
  7. Knuth, D. E. (1997). The Art of Computer Programming. Vol. 1: Fundamental Algorithms (3rd ed.). Addision-Wesley, Reading, MA.
  8. Lah, I. (1955). Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik. Mitteilungsblatt für mathematische Statistik, 7, 203–212.
  9. Mihoubi, M. (2010). Partial Bell polynomials and inverse relations. Journal of Integer Sequences, 13, Article 10.4.5.
  10. Riordan, J. (2002). Introduction to Combinatorial Analysis. Reprint, Dover Publ., Inc., Mineola, New York.
  11. Schreiber, A. (2015). Multivariate Stirling polynomials of the first and second kind. Discrete Mathematics, 338, 2462–2484.
  12. Schreiber, A. (2020). Inverse relations and reciprocity laws involving partial Bell polynomials and related extensions. Enumerative Combinatorics and Applications, 1(1), Article S2R3.
  13. Schreiber, A. (2021). Stirling Polynomials in Several Indeterminates. Logos Verlag Berlin GmbH, (155 pp.).
  14. Stanley, R. P. (1986). Enumerative Combinatorics, Vol. 1. Wadsworth & Brooks/Cole, Monterey.
  15. Todorov, P. G. (1985). New differential recurrence relations for Bell polynomials and Lie coefficients. Comptes rendus de l’Académie bulgare des Sciences, 38(1), 43–45.

Manuscript history

  • Received: 6 August 2023
  • Revised: 8 March 2024
  • Accepted: 12 March 2024
  • Online First: 13 March 2024

Copyright information

Ⓒ 2024 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Schreiber, A. (2024). Factorial polynomials and associated number families. Notes on Number Theory and Discrete Mathematics, 30(1), 170-178, DOI: 10.7546/nntdm.2024.30.1.170-178.

Comments are closed.