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Abstract: Two doubly indexed families of polynomials in several indeterminates are considered.
They are related to the falling and rising factorials in a similar way as the potential polynomials
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1 Basic notions

In the following, we denote by F the algebra K[[x]] of formal power series in x with coefficients
in a fixed commutative field K of characteristic zero. The elements of F will be called functions,
those of K constants (or numbers). For any functions f, g and constant c, the sum f + g, the
scalar product cf , and the product f · g are, as customary, assumed to be defined coordinate-wise
and by Cauchy convolution, respectively. Furthermore, we consider the composition ◦ with
(f ◦ g)(x) := f(g(x)) which is a partial operation on F , but well-defined, for example, if
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the leading coefficient of g is zero or, otherwise, f is a (Laurent) polynomial in x−1, x with
coefficients in K. The identity element is, of course, ι = ι(x) := x, satifying f ◦ ι = ι ◦ f = f .

The ordinary algebraic derivation D on K[x] (with D(ι) = 1) can be extended, in a unique
way, to a derivation on F (here also denoted by D) for which the known rules for addition,
multiplication and composition apply [13, p. 15, 61]. Iterating D leads, in the usual way, to
derivatives of higher order Dn(f). By setting fn := Dn(f)(0), we obtain, as is well known, the
representation of f(x) in the form of a Taylor series expansion:

f(x) =
∑
n≥0

fn
xn

n!
.

The constants f0, f1, f2, . . . ∈ K are called Taylor coefficients of f .

2 Potential polynomials

Of special interest is the task of finding the general Taylor coefficient of a composite function
f ◦ g. Its well known solution is given by a famous formula of Faà di Bruno (cf. [3, p. 137]
and [11, eqs. (1.3) and (4.1)]), which in modern notation is

Dn(f ◦ g)(0) =
n∑

k=0

Dk(f)(g0)Bn,k(g1, . . . , gn−k+1). (2.1)

Here Bn,k are the partial Bell polynomials (or: exponential polynomials) that can be represented
in the form of a ‘diophantine’ sum

Bn,k =
∑ n!

r1!r2! · · · (1!)r1(2!)r2 · · ·
Xr1

1 Xr2
2 · · ·Xrn−k+1

n−k+1

to be taken over all sequences of integers r1, r2, r3, . . . ≥ 0 such that r1 + r2 + r3 + · · · = k

and r1 + 2r2 + 3r3 + · · · = n. Since these polynomials had been introduced by E. T. Bell [1] in
1934, an enormous number of studies have been carried out on their properties, applications and
variants (see, e. g., [3, 5, 9, 13, 15]).

By replacing the Taylor coefficients gj with indeterminates Xj on the right-hand side of (2.1),
one obtains a polynomial dependent on f (in [12, 13] called the Faà di Bruno polynomial of f ).
An important special case is f = ιk, k ∈ Z, which leads to the potential polynomials

Pn,k =
n∑

j=0

kjXk−j
0 Bn,j, (2.2)

introduced by Comtet [3, p. 141] and extensively studied in [3, 12, 13]. Here kj is D. Knuth’s
symbol for the falling factorial power k(k − 1) · · · (k − j + 1), and kj = 1 for j = 0.

If g ∈ F is (compositionally) invertible, then g0 = g(0) = 0, and we obtain from (2.1)
Dn(gk)(0) = k!Bn,k(g1, . . . , gn−k+1), that is, Bn,k(g1, . . . , gn−k+1) is the n-th Taylor coefficient
of g(x)k/k!. For completeness, we note that there also exists a polynomial expression
An,k(g1, . . . , gn−k+1) for the n-th Taylor coefficient of g(x)k/k!, where g denotes the unique
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inverse of g (with g ◦ g = g ◦ g = ι). The fundamental properties (recurrences, inverse relations,
reciprocity laws) of these two families of polynomials are treated in detail in [11–13]. Here we
make use of the fact that the (lower triangular) matrices (An,k) and (Bn,k) are inverses of each
other with respect to matrix multiplication, more precisely:

n∑
j=k

An,jBj,k = δnk (1 ≤ k ≤ n), (2.3)

where δnn = 1, δnk = 0 if n ̸= k (Kronecker symbol); see [13, p. 29 and p. 82].
Let now Qn be any sequence of polynomials from K[X1, X2, . . .]. We then call the sequence

of numbers q(n) := Qn(1, 1, . . .), obtained by replacing each indeterminate occurring in Qn

by 1 ∈ K, associated with Qn. Thus q(n) is equal to the sum of the coefficients of Qn. For
example, it is well known that the family of numbers s2(n, k) := Bn,k(1, . . . , 1) associated with
the partial Bell polynomials consists just of the Stirling numbers of the second kind [3, Thm. B,
p. 135]. Together with the signed Stirling numbers of the first kind s1(n, k), they satisfy the
inverse relation

∑n
j=k s1(n, j)s2(j, k) = δnk (see, for example, [14, Prop. 1.4.1(a)]). Therefore,

specializing all indeterminates to 1 in (2.3), An,k(1, . . . , 1) turns out to be equal to s1(n, k).
In his famous treatise Methodus differentialis (London, 1730) J. Stirling introduced the

number family s1(n, k) by expanding xn into a polynomial in standard form

xn = x(x− 1) · · · (x− n+ 1) =
n∑

k=0

s1(n, k)x
k. (2.4)

Due to the inverse relationship of the Stirling numbers of the first and second kind [14,
Prop. 1.4.1(b)] we get from (2.4)

xn =
n∑

k=0

s2(n, k)x
k. (2.5)

Comparing now (2.5) with (2.2), we find that Pn,k(1, . . . , 1) = kn holds, i.e., kn is the number
family associated with the potential polynomials Pn,k.

Remark 2.1. The power terms kn, kn, kn have an obvious combinatorial meaning that entails a
natural combinatorial interpretation of equations (2.4) and (2.5) (see, for example, [14, p. 33–35]).
Also the Stirling numbers have a combinatorial meaning: s2(n, k) counts the ways n objects
can be divided into k non-empty subsets (‘subset numbers’), whereas the signless expression
c(n, k) := |s1(n, k)| = (−1)n−ks1(n, k) represents the number of permutations of n objects
having k cycles (‘cycle numbers’).

3 Factorial polynomials

Analogous to the way in which the potential polynomials were defined as Faà di Bruno
polynomials of ιk, let us now introduce lower and upper factorial polynomials as Faà di Bruno
polynomials of the falling and rising factorial power functions ιk and ιk, respectively:
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Pn,k :=
n∑

j=0

Dj(ιk)(X0)Bn,j(X1, . . . , Xn−j+1) (3.1)

Pn,k :=
n∑

j=0

Dj(ιk)(X0)Bn,j(X1, . . . , Xn−j+1) (3.2)

We first consider (3.1). Since Dj is a linear operator, applying (2.5) to ιk and observing (2.2)
yields

Pn,k =
n∑

j=0

k∑
r=0

s1(k, r)D
j(ιr)(X0)Bn,j

=
k∑

r=0

s1(k, r)
n∑

j=0

rjXr−j
0 Bn,j

=
k∑

r=0

s1(k, r)Pn,r (3.3)

which can be reversed to

Pn,k =
k∑

r=0

s2(k, r)Pn,r. (3.4)

In a similar way (3.2) can be evaluated. The only thing to keep in mind is that ιk = (−1)k(−ι)k

and therefore by (2.4)

ιk = (−1)k
k∑

r=0

s1(k, r)(−ι)r =
k∑

r=0

c(k, r)ιr,

whence we readily obtain

Pn,k =
k∑

r=0

c(k, r)Pn,r. (3.5)

To be able to establish also the connection between Pn,k and Pn,k, recall the numbers l(n, k)

introduced by I. Lah [8], [10, p. 43–44]:

l(n, k) := (−1)n
n!

k!

(
n− 1

k − 1

)
with xn =

n∑
k=0

l(n, k)xk. (3.6)

Remark 3.1. The unsigned Lah numbers |l(n, k)| count the ways a set of n objects can be
partitioned into k non-empty linearly ordered subsets.

Two well-known remarkable properties of the signed Lah numbers come into play in what
follows: their representability in terms of the Stirling numbers, and the fact that they are inverses
of themselves (see [10, p. 44] and [13, p. 31, 91]):
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n∑
j=k

(−1)js1(n, j)s2(j, k) = l(n, k), (3.7)

n∑
j=k

l(n, j)l(j, k) = δnk. (3.8)

Theorem 3.1. For all nonnegative integers n, k we have

(i) Pn,k =
k∑

j=0

(−1)kl(k, j)Pn,j,

(ii) Pn,k =
k∑

j=0

(−1)jl(k, j)Pn,j.

Proof. We have

Pn,k =
k∑

r=0

c(k, r)Pn,r (by (3.5))

=
k∑

r=0

r∑
j=0

c(k, r)s2(r, j)Pn,j (by (3.4))

=
k∑

r=0

r∑
j=0

(−1)k−rs1(k, r)s2(r, j)Pn,j (by Remark 2.1)

=
k∑

j=0

(−1)k

(
k∑

r=j

(−1)rs1(k, r)s2(r, j)

)
Pn,j. (rearranging the double sum)

Now, applying (3.7) to the inner sum, we obtain assertion (i).
Assertion (ii) follows from (i) with respect to (3.8) as follows:

k∑
j=0

(−1)jl(k, j)Pn,j =
k∑

j=0

(−1)jl(k, j)

j∑
r=0

(−1)jl(j, r)Pn,r

=
k∑

r=0

(
k∑

j=r

(−1)2jl(k, j)l(j, r)

)
Pn,r

=
k∑

r=0

δkrPn,r = Pn,k.

4 Associated number families

This section deals with the number families associated with the upper and lower factorial
polynomials:

[n]k := Pn,k(1, . . . , 1) =
k∑

r=0

c(k, r)rn, (4.1)

[n]k := Pn,k(1, . . . , 1) =
k∑

r=0

s1(k, r)r
n. (4.2)
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To be more consistent with the combinatorial interpretation of the Stirling numbers (as
explained in Remark 2.1), we will use in some cases the notation of J. Karamata recommended
by Knuth [6]:

s2(n, k) =

{
n

k

}
and c(n, k) =

[
n

k

]
.

We start with some preparatory remarks. From (2.5) we readily obtain rn =
∑n

j=0 j!
(
r
j

)
s2(n, j)

which implies an identity that reduces a power sum with arbitrary weights γk,r, 1 ≤ r ≤ k, and
integer exponent n ≥ 1 as follows:

k∑
r=1

γk,rr
n =

min(k,n)∑
j=1

j!s2(n, j)
k∑

r=j

(
r

j

)
γk,r. (4.3)

There are quite a few cases allowing the inner sum on the right-hand side of (4.3) to be simplified
significantly, that is, we would obtain an upper summation rule such as

k∑
r=j

(
r

j

)
γk,r = f(k, j) (4.4)

with a more or less closed expression f(k, j).

Remark 4.1. The most simple example is γk,r ≡ 1, yielding in (4.4) the term f(k, j) =
(
k+1
j+1

)
.

With this, (4.3) becomes the familar identity

1n + 2n + · · ·+ kn =

min(k,n)∑
j=1

j!

{
n

j

}(
k + 1

j + 1

)
. (4.5)

The reader may find in Hsu [4] a great variety of choices for the γk,r. However, the case of Stirling
numbers as weights has not been considered in those discussions.

Boyadzhiev [2] has evaluated (4.3) for the cycle numbers γk,r = c(k, r) thereby taking
f(k, j) = c(k+1, j+1), which turns (4.4) into a well-known identity (see, for example, [7, p. 68,
eq. (51)] ). This gives immediately the following nice result [2, Prop. 2.7] that has a remarkable
analogy to (4.5):

Proposition 4.1. For any positive integers n, k we have

[n]k =
k∑

r=1

[
k

r

]
rn =

min(k,n)∑
j=1

j!

{
n

j

}[
k + 1

j + 1

]
.

Remark 4.2. Instead of s2(n, j) Boyadzhiev makes use of a Stirling function S(n, j) whose first
argument is allowed to be a complex number n ̸= 0. In this case, the upper summation limit
min(k, n), which appears in (4.3) and in Proposition 4.1, has to be replaced by k.

From now on, the exponent n is assumed to be any positive integer.
Let us turn finally to the question of what result we get from (4.3) when the signed Stirling

numbers of the first kind s1(k, r) are chosen as weights. The answer is given in the following
theorem.
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Theorem 4.2. For any positive integers n, k we have

[n]k =
k∑

r=1

(−1)k−r

[
k

r

]
rn =

min(k,n)∑
j=1

(−1)k−jj!

{
n

j

}([
k − 1

j − 1

]
−
[
k − 1

j

])
.

Proof. Evaluating (4.3) for γk,r = s1(k, r) requires a new upper summation formula:

k∑
r=j+1

(
r

j

)
s1(k, r) = ks1(k − 1, j). (4.6)

First, we show by induction on k that (4.6) holds for every k ≥ 1 and 0 ≤ j ≤ k − 1. In the case
of k = 1 we have j = 0, and both sides of (4.6) are equal to 1.

The induction step (k → k+1) makes repeated use of the familiar recurrence formula for the
Stirling numbers of the first kind (see, e. g., [7, p. 67]):

s1(k + 1, r) = s1(k, r − 1)− ks1(k, r).

Replacing s1(k + 1, r) by s1(k, r − 1)− ks1(k, r) we obtain

k+1∑
r=j+1

s1(k + 1, r)

(
r

j

)
=

k+1∑
r=j+1

s1(k, r − 1)

(
r

j

)
−

k+1∑
r=j+1

ks1(k, r)

(
r

j

)
. (4.7)

By induction hypothesis, the second sum on the right-hand side of (4.7) is equal to k2s1(k−1, j).
The first sum can be splitted into two parts by applying the familiar basic addition formula for the
binomial coefficients. We then have, again by induction hypothesis,

k+1∑
r=j+1

s1(k, r − 1)

(
r − 1

j − 1

)
=

k∑
r=j

s1(k, r)

(
r

j − 1

)
= ks1(k − 1, j − 1),

k+1∑
r=j+1

s1(k, r − 1)

(
r − 1

j

)
=

k∑
r=j

s1(k, r)

(
r

j

)
= s1(k, j) + ks1(k − 1, j).

Combining these results we obtain for the sum on the left-hand side of (4.7)

ks1(k − 1, j − 1) + s1(k, j) + ks1(k − 1, j)− k2s1(k − 1, j)

= k · [s1(k − 1, j − 1)− (k − 1)s1(k − 1, j)] + s1(k, j)

= ks1(k, j) + s1(k, j)

= (k + 1)s1(k, j),

which completes the induction.
Finally, it follows from (4.6):

k∑
r=j

(
r

j

)
s1(k, r) = s1(k, j) + ks1(k − 1, j)

= s1(k − 1, j − 1) + s1(k − 1, j)

= (−1)k−j

[
k − 1

j − 1

]
− (−1)k−j

[
k − 1

j

]
.

This yields the asserted equation.
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Table 1. Numbers [n]k for 1 ≤ n, k ≤ 7

k = 1 2 3 4 5 6 7

n = 1 1 1 −1 2 −6 24 −120

n = 2 1 3 −1 0 4 −28 188

n = 3 1 7 5 −16 54 −222 1098

n = 4 1 15 35 −60 124 −280 440

n = 5 1 31 149 −88 −186 1914 −13350

n = 6 1 63 539 420 −2996 13832 −66592

n = 7 1 127 1805 4664 −15546 43578 −98862

We conclude this section with some examples for small exponents n = 1, 2, 3 which demonstrate
that the given power sum indeed undergoes a substantial simplification through the right-hand
side expression in the statement of Theorem 4.2.

Let k ≥ 2, then, cancelling (−1)k in each equation we obtain the identities:
k∑

r=1

(−1)r
[
k

r

]
r =

[
k − 1

1

]
,

k∑
r=1

(−1)r
[
k

r

]
r2 = 3

[
k − 1

1

]
− 2

[
k − 1

2

]
,

k∑
r=1

(−1)r
[
k

r

]
r3 = 7

[
k − 1

1

]
− 12

[
k − 1

2

]
+ 6

[
k − 1

3

]
.

5 Concluding remarks

The aim of the present paper was to supplement the potential polynomials introduced by Comtet
[3] with the analogously defined Faà di Bruno polynomials of the falling and rising power
functions. As the results in Section 3 show, both types of factorial polynomials introduced in this
way can be expressed in terms of the potential polynomials, and vice versa. Of course, the relevant
relationships yield also directly their specialized version for the associated number families
discussed in Section 4. In this way, for example, the equations (3.3) and (3.4) immediately
become the following inverse relation pair (with respect to the Stirling numbers of the first and
second kind):

[n]k =
k∑

r=0

s1(k, r)r
n, kn =

k∑
r=0

s2(k, r)[n]r.

The reader may compare this with the ‘classical’ identities (see (2.4) and (2.5)):

nk =
k∑

r=0

s1(k, r)n
r, nk =

k∑
r=0

s2(k, r)n
r.

Acknowledgements

The author would like to thank the anonymous reviewers and the academic editor for helpful
comments and suggestions.

177



References

[1] Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics, 35, 258–277.

[2] Boyadzhiev, K. N. (2008/2009). Power sum identities with generalized Stirling numbers.
The Fibonacci Quarterly, 46/47(4), 326–330.

[3] Comtet, L. (1974). Advanced Combinatorics (Rev. and enlarged ed.). Reidel, Dordrecht,
Holland.

[4] Hsu, L. C. (1993). A summation rule using Stirling numbers of the second kind. The
Fibonacci Quarterly, 31(3), 256–262.

[5] Kim, D. S., Kim., T, Lee, S. H., & Park, J.-W. (2021). Some new formulas of complete and
incomplete degenerate Bell polynomials. Advances in Difference Equations, 2021, Article
326.

[6] Knuth, D. E. (1992). Two notes on notation. The American Mathematical Monthly, 99,
403–422.

[7] Knuth, D. E. (1997). The Art of Computer Programming. Vol. 1: Fundamental Algorithms
(3rd ed.). Addision-Wesley, Reading, MA.

[8] Lah, I. (1955). Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der
mathematischen Statistik. Mitteilungsblatt für mathematische Statistik. 7, 203–212.

[9] Mihoubi, M. (2010). Partial Bell polynomials and inverse relations. Journal of Integer
Sequences, 13, Article 10.4.5.

[10] Riordan, J. (2002). Introduction to Combinatorial Analysis. Reprint, Dover Publ., Inc.,
Mineola, New York.

[11] Schreiber, A. (2015). Multivariate Stirling polynomials of the first and second kind. Discrete
Mathematics, 338, 2462–2484.

[12] Schreiber, A. (2020). Inverse relations and reciprocity laws involving partial Bell
polynomials and related extensions. Enumerative Combinatorics and Applications, 1(1),
Article S2R3.

[13] Schreiber, A. (2021). Stirling Polynomials in Several Indeterminates. Logos Verlag Berlin
GmbH, (155 pp.).

[14] Stanley, R. P. (1986). Enumerative Combinatorics, Vol. 1. Wadsworth & Brooks/Cole,
Monterey.

[15] Todorov, P. G. (1985). New differential recurrence relations for Bell polynomials and Lie
coefficients. Comptes rendus de l’Académie bulgare des Sciences, 38(1), 43–45.

178


