The 2-successive partial Bell polynomials

Meriem Tiachachat and Miloud Mihoubi
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 3, Pages 538–544
DOI: 10.7546/nntdm.2023.29.3.538-544
Full paper (PDF, 203 Kb)

Details

Authors and affiliations

Meriem Tiachachat
Department of Operational Research, USTHB
P. O. 32 El Alia 16111 Algiers, Algeria

Miloud Mihoubi
Department of Operational Research, USTHB
P. O. 32 El Alia 16111 Algiers, Algeria

Abstract

In this paper, we discuss a new class of partial Bell polynomials. The first section gives an overview of partial Bell polynomials and their related 2-successive Stirling numbers. In the second section, we introduce the concept of 2-successive partial Bell polynomials. We give an explicit formula for computing these polynomials and establish their generating function. In addition, we derive several recurrence relations that govern the behaviour of these polynomials. Furthermore, we study specific cases to illustrate the applicability and versatility of this new class of polynomials.

Keywords

  • 2-successive associated Stirling numbers
  • Exponential partial Bell polynomials
  • Generating function

2020 Mathematics Subject Classification

  • 05-XX
  • 05A18

References

  1. Belbachir, H., & Tebtoub, A. F. (2015). Les nombres de Stirling associés avec succession d’ordre 2, nombres de Fibonacci–Stirling et unimodalité. Comptes rendus de l’Académie des Sciences, Series I, 353, 767–771.
  2. Bell, E. T. (1927). Partition polynomials. Annals of Mathematics, 29 (1/4), 38–46.
  3. Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics, 35, 258–277.
  4. Comtet, L. (1974). Advanced Combinatorics. Reidel, L. Publishing Company. Dordrecht-Holland / Boston-U.S.A.
  5. Cvijović, D. (2014). New identities for the partial Bell polynomials. Comptes rendus de l’Académie des Sciences, Series I, 352, 965–969.
  6. Kim, T., & Kim, D. S. (2023). Some results on degenerate Fubini and degenerate Bell polynomials. Applicable Analysis and Discrete Mathematics, OnLine-First (00):35-35. https://doi.org/10.2298/AADM200310035K.
  7. Kim, T., Kim, D. S., Kwon, J., Lee, H., & Park, S.-H. (2021). Some properties of degenerate complete and partial Bell polynomials. Advances in Difference Equations, 2021, Article ID 304.
  8. Kim, T., Kim, D. S. Lee, H., & Park, J.-W. (2020). A note on degenerate r-Stirling numbers. Journal of Inequalities and Applications, 2020, Article ID 225.
  9. Mihoubi, M. (2008). Bell polynomials and binomial type sequences. Discrete Mathematics, 308, 2450–2459.
  10. Mihoubi, M. (2010). Partial Bell polynomials and inverse relations. Journal of Integer Sequences, 13, Article 10.4.5.
  11. Mihoubi, M., & Rahmani, M. (2017). The partial r-Bell polynomials. Afrika Matematika, 28(7–8), 1167–1183.

Manuscript history

  • Received: 21 September 2022
  • Revised: 26 April 2023
  • Accepted: 25 July 2023
  • Online First: 27 July 2023

Copyright information

Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Tiachachat, M., & Mihoubi, M. (2023). The 2-successive partial Bell polynomials. Notes on Number Theory and Discrete Mathematics, 29(3), 538-544, DOI: 10.7546/nntdm.2023.29.3.538-544.

Comments are closed.