On the connections between Pell numbers and Fibonacci

Anthony G. Shannon, Özgür Erdağ and Ömür Deveci
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 1, Pages 148—160
DOI: 10.7546/nntdm.2021.27.1.148-160
Download full paper: PDF, 235 Kb


Authors and affiliations

Anthony G. Shannon
Warrane College, University of New South Wales
Kensington, Australia

Özgür Erdağ
Department of Mathematics, Faculty of Science and Letters
Kafkas University 36100, Turkey

Ömür Deveci
Department of Mathematics, Faculty of Science and Letters
Kafkas University 36100, Turkey


In this paper, we define the Fibonacci–Pell p-sequence and then we discuss the connection of the Fibonacci–Pell p-sequence with the Pell and Fibonacci p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Fibonacci–Pell p-numbers by the aid of the n-th power of the generating matrix of the Fibonacci–Pell p-sequence. Furthermore, we derive relationships between the Fibonacci–Pell p-numbers and their permanent, determinant and sums of certain matrices.


  • Pell sequence
  • Fibonacci p-sequence
  • Matrix
  • Representation

2010 Mathematics Subject Classification

  • 11K31
  • 11C20
  • 15A15


  1. Bradie, B. (2010). Extension and refinements of some properties of sums involving Pell number. Missouri Journal of Mathematical Sciences, 22(1), 37–43.
  2. Brualdi, R. A., & Gibson, P. M. (1977). Convex polyhedra of doubly stochastic matrices. I. Applications of permanent function, Journal of Combinatorial Theory, Series A, 22(2), 194–230.
  3. Chen, W. Y. C., & Louck, J. D. (1996). The combinatorial power of the companion matrix. Linear Algebra and its Applications, 232, 261–278.
  4. Devaney, R. L. (1999). The Mandelbrot set, the Farey tree, and the Fibonacci sequence, The American Mathematical Monthly, 106(4), 289–302.
  5. Deveci, O., Adiguzel, Z. & Dogan, T. (2020). On the Generalized Fibonacci-circulant-Hurwitz Numbers, Notes on Number Theory and Discrete Mathematics, 26(1), 179–190.
  6. Deveci, O., & Artun, G. (2019). On the Adjacency-Jacobsthal Numbers. Communications in Algebra, 47 (11), 4520-4532.
  7. Deveci, O., Karaduman, E., & Campbell, C. M. (2017). The Fibonacci-Circulant Sequences and Their Applications. Iranian Journal of Science and Technology, Transaction A, Science, 41(4), 1033–1038.
  8. Frey, D. D., & Sellers, J. A. (2000). Jacobsthal numbers and alternating sign matrices. Journal of Integer Sequences, 3, Article 00.2.3.
  9. Gogin, N. D., & Myllari, A. A. (2007). The Fibonacci–Padovan sequence and MacWilliams transform matrices. Program. Comput. Softw., published in Programmirovanie, 33(2), 74–79.
  10. Horadam, A. F. (1994). Applications of modified Pell numbers to representations. Ulam Quarterly Journal, 3(1), 34–53.
  11. Johnson, R. C. (2009). Fibonacci numbers and matrices, Available online: https://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf.
  12. Kalman, D. (1982). Generalized Fibonacci numbers by matrix methods. The Fibonacci Quarterly, 20(1), 73–76.
  13. Kilic, E. (2008). The Binet fomula, sums and representations of generalized Fibonacci p-numbers. European Journal of Combinatorics, 29(3), 701–711.
  14. Kilic, E., & Tasci, D. (2006). The generalized Binet formula, representation and sums of the generalized order-k Pell numbers. Taiwanese Journal of Mathematics, 10(6), 1661–1670.
  15. Kocer, E. G., & Tuglu, N. (2007). The Binet formulas for the Pell and Pell–Lucas p-numbers. Ars Combinatoria, 85, 3–17.
  16. Koken, F., & Bozkurt, D. (2008). On the Jacobsthal numbers by matrix methods. International Journal of Contemporary Mathematical Sciences, 3(13), 605–614.
  17. Lancaster, P. & Tismenetsky, M. (1985). The Theory of Matrices: with Applications, Elsevier.
  18. Lidl, R., & Niederreiter, H. (1994). Introduction to Finite Fields and Their Applications, Cambridge University Press.
  19. McDaniel, W. L. (1996). Triangular numbers in the Pell sequence. The Fibonacci Quarterly, 34(2), 105–107.
  20. Shannon, A. G., Anderson, P. G., & Horadam, A. F. (2006). Properties of Cordonnier, Perrin and Van der Laan numbers. International Journal of Mathematical Education in Science and Technology, 37(7), 825–831.
  21. Shannon, A. G., Horadam, A. F., & Anderson, P. G. (2006). The auxiliary equation associated with the plastic number, Notes on Number Theory and Discrete Mathematics, 12(1), 1–12.
  22. Stakhov, A. P. (1999). A generalization of the Fibonacci Q-matrix. Rep. Natl. Acad. Sci. Ukraine, 9, 46–49.
  23. Stakhov, A. P., & Rozin, B. (2006). Theory of Binet formulas for Fibonacci and Lucas p-numbers. Chaos, Solitions, Fractals, 27(5), 1162–1177.
  24. Stewart, I. (1996). Tales of a neglected number. Scientific American, 274(6), 102–103.
  25. Tasci, D., & Firengiz, M. C. (2010). Incomplete Fibonacci and Lucas p-numbers.
    Mathematical and Computer Modelling, 52(9–10), 1763–1770..

Related papers

Cite this paper

Shannon, A.G., Erdağ, Ö., & Deveci, Ö. (2021). On the connections between Pell numbers and Fibonacci p-numbers. Notes on Number Theory and Discrete Mathematics, 27(1), 148-160, doi: 10.7546/nntdm.2021.27.1.148-160.

Comments are closed.