On the Generalized Fibonacci-circulant-Hurwitz numbers

Ömür Deveci, Zafer Adıgüzel and Taha Doğan
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 1, Pages 179-190
DOI: 10.7546/nntdm.2020.26.1.179-190
Download full paper: PDF, 182 Kb

Details

Authors and affiliations

Ömür Deveci
Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100, Turkey

Zafer Adıgüzel
Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100, Turkey

Taha Doğan
Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100, Turkey

Abstract

The theory of Fibonacci-circulant numbers was introduced by Deveci et al. (see [5]).
In this paper, we define the Fibonacci-circulant-Hurwitz sequence of the second kind by Hurwitz matrix of the generating function of the Fibonacci-circulant sequence of the second kind and give a fair generalization of the sequence defined, which we call the generalized Fibonacci-circulant-Hurwitz sequence. First, we derive relationships between the generalized Fibonacci-circulant-Hurwitz numbers and the generating matrices for these numbers. Also, we give miscellaneous properties of the generalized Fibonacci-circulant-Hurwitz numbers such as the Binet formula, the combinatorial, permanental, determinantal representations, the generating function, the exponential representation and the sums.

Keywords

  • Fibonacci-circulant-Hurwitz Sequence
  • Circulant matrix
  • Hurwitz matrix
  • Representation

2010 Mathematics Subject Classification

  • 11K31
  • 11B50
  • 11C20
  • 20D60

References

  1. Atanassov, K. T., Atanassova, V. K., Shannon, A. G., & Turner, J. (2002). New Visual Perspectives on Fibonacci Numbers, World Scientific.
  2. Brualdi, R. A., & Gibson, P. M. (1997). Convex polyhedra of doubly stochastic matrices I: applications of permanent function, J. Combin. Theory, 22, 194–230.
  3. Chen, W. Y. C., & Louck, J. C. (1996). The combinatorial power of the companion matrix, Linear Algebra Appl., 232, 261–278.
  4. Deveci, O. (2018). On the Fibonacci-circulant p-sequences, Util Math., 108, 107–124.
  5. Deveci, O., Karaduman, E., & Campbell, C. M. (2017). The Fibonacci-circulant sequences and their applications, Iran J. Sci. Technol. Trans. Sci., 41 (4), 1033–1038.
  6. El Naschie, M. S. (2005). Deriving the essential features of standard model from the general theory of relativity, Chaos Solitons Fractals, 24 (4), 941–946.
  7. Gogin, N. D., & Myllari, A. A. (2007). The Fibonacci–Padovan sequence and MacWilliams transform matrices, Program. Comput Softw published in Programmirovanie, 33 (2), 74–79.
  8. Hurwitz, A. (1895). Ueber die Bedingungen unter welchen eine gleichung nur Wurzeln mit negative reellen teilen besitzt, Mathematische Annalen, 46, 273–284.
  9. Kalman, D. (1982). Generalized Fibonacci numbers by matrix methods, Fibonacci Quart., 20 (1), 73–76.
  10. Kaluge, G. R. (2011). Penggunaan Fibonacci dan Josephus problem dalam algoritma enkripsi transposisi+substitusi, Makalah IF 3058 Kriptografi-Sem. II Tahun.
  11. Kilic, E. (2008). The Binet formula, sums and representations of generalized Fibonacci p-numbers, European J. Combin, 29, 701–711.
  12. Kilic, E., & Tasci, D. (2007). On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers, Rocky Mountain J. Math., 37 (6), 1953–1969.
  13. Kirchoof, B. K., & Rutishauser, R. (1990). The phyllotaxy of costus (costaceae), Bot Gazette, 151 (1), 88–105.
  14. Kraus, F. J., Mansour, M., & Sebek, M. (1996). Hurwitz Matrix for Polynomial Matrices, In Jeltsch R Mansour M (eds) Stability Theory ISNM International Series of Numerical Mathematics 121 Birkhäuser Basel.
  15. Lancaster, P., & Tismenesky, M. (1985). The Theory of Matrices, Academic Press.
  16. Lidl, R., & Niederreiter, H. (1986). Introduction to Finite Fields and Their Applications, Cambridge UP.
  17. Lipshitz, L., & van der, A. (1990). Poorten AJ Rational functions, diagonals, automata and arithmetic, Number Theory (Banff, AB, 1988) de Grutyer, Berlin, 339–358.
  18. Mandelbaum, D. M. (1972). Synchronization of codes by means of Kautz’s Fibonacci encoding, IEEE Transactions on Information Theory, 18 (2), 281–285.
  19. Matiyasevich, Y. V. (1993). Hilbert’s Tenth Problem, MIT Press, Cambridge, MA.
  20. Shannon, A. G., & Leyendekkers, J.V. (2011). Pythagorean Fibonacci patterns, Int. J. Math. Educ. Sci. Technol., 43 (4), 554–559.
  21. Sloane, N. J. A. Sequences A000045/M0692, A000073/M1074, A000078/M1108, A001591, A001622, A046698, A058265, A086088, and A118745 in The On-Line Encyclopedia of Integer Sequences.
  22. Spinadel, V.W. (1999). The family of metallic means, Vis Math, 1(3) Mathematical Institute SASA.
  23. Stakhov, A. P., & Rozin, B. (2006). Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos Solitons Fractals, 27 (5), 1162–1167.
  24. Stein, W. (1993). Modelling the evolution of Stelar architecture in Vascular plants, Int. J. Plant. Sci., 154 (2), 229–263.
  25. Stewart, I. (1996). Tales of neglected number, Sci. Amer., 274, 102–103.
  26. Stroeker, R. J. (1988). Brocard Points, Circulant Matrices, and Descartes Folium, Math. Mag., 61 (3), 172–187.
  27. Tasci, D., & Firengiz, M. C. (2010). Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modelling, 52, 1763–1770.
  28. Tuglu, N., Kocer, E. G., & Stakhov, A. P. (2011). Bivariate Fibonacci-like p-polynomials, Appl. Math. Comput., 217 (24), 10239–10246.
  29. Wolfram Research, (2014). Inc Mathematica, Version 10.0: Champaign, Illinois.

Related papers

Cite this paper

Deveci, Ö., Adıgüzel, Z., & Doğan, T. (2020). On the Generalized Fibonacci-circulant-Hurwitz numbers. Notes on Number Theory and Discrete Mathematics, 26(1), 179-190, doi: 10.7546/nntdm.2020.26.1.179-190.

Comments are closed.