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Abstract: The theory of Fibonacci-circulant numbers was introduced by Deveci et al. (see [5]).
In this paper, we define the Fibonacci-circulant-Hurwitz sequence of the second kind by Hurwitz
matrix of the generating function of the Fibonacci-circulant sequence of the second kind and give
a fair generalization of the sequence defined, which we call the generalized Fibonacci-circulant-
Hurwitz sequence. First, we derive relationships between the generalized Fibonacci-circulant-
Hurwitz numbers and the generating matrices for these numbers. Also, we give miscellaneous
properties of the generalized Fibonacci-circulant-Hurwitz numbers such as the Binet formula,
the combinatorial, permanental, determinantal representations, the generating function, the
exponential representation and the sums.

Keywords: Fibonacci-circulant-Hurwitz Sequence, Circulant matrix, Hurwitz matrix, Represen-
tation.
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1 Introduction

The k-step Fibonacci sequence {F,’f} is defined by initial values Ff = Ff = F} , =0, Ff =1
and recurrence relation

Fr o =FF, +FF, o4+ FFforn >0,

For detailed information about the k-step Fibonacci sequence, see [9, 21].
In [5], Deveci et al. defined the Fibonacci-circulant sequence of the second kind as shown:

= =23=0,22=1and 2’ = —2? ;+ 2> , — 2> ,forn > 6.

Note that the characteristic polynomial of the Fibonacci-circulant sequence of the second kind is
as follows:

f(z)=—-2"+2>+z—1.

Let an n-th degree real polynomial f be given by
2 (x) =cox" + ™t epiT F .

In [8], the Hurwitz matrix H,, = [hm]nm associated to the polynomial f was defined as shown:

[ C3 Cp wve e e 0 0 0 |
Co Co C4
0 C1 C3
Cop C2 0
H, = 0 c1 e e T Cp,
S S P P 0
0O «-- o0 ... Cn—9 Cn
Cn—3 Cn—1 0
_0 O 0 -+ e ... Cn4 Cn-2 Cp |

Consider the k-step homogeneous linear recurrence sequence {a,, },
(ntk = Colpn + Cllp41 + **+ + Ch—10nyk—1,

where c¢g,cy,...,c._1 are real constants. In [9], Kalman derived a number of closed-form
formulas for the sequence {a,,} by matrix method as follows:

ap (07%
a Qn41
A =
Qr—1 Ap4k—1
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, Where

[0 1 0 0 0 ]
0 0 1 0 0
0O 0 O 0 0
A= laisli =
o 0 o0 -- 0 1
| Co C1 C2 Cr—2 Ck—1 |

Number theoretic properties such as these obtained from Fibonacci numbers relevant to this
paper have been studied by many authors [1, 4, 7, 11, 12, 20, 23, 27, 28]. Now we define the
generalized Fibonacci-circulant-Hurwitz numbers and then, we obtain their miscellaneous
properties using the generating matrix and the generating function of these numbers.

2 Significance

As it is well-known that recurrence sequences, circulant matrix and Hurwitz matrix appear in
modern research in many fields from mathematics, physics, computer science, architecture to
nature and art (see, for example, [6, 10, 13, 14, 17, 18, 19, 22, 24, 25, 26]). This paper is expanded
the concept to the generalized Fibonacci-circulant-Hurwitz sequence which is defined by using
circulant and Hurwitz matrices.

3 The main resutls

By the polynomial f2 (z), we can write the following Hurwitz matrix:

01 -1 0 0
10 1 0 0
M*<=|00 1 -1 0
01 0 1 0
|0 0 1 —1 |

Using the matrix M?2, we define the Fibonacci-circulant-Hurwitz sequence of the second kind
as shown:

2 _ _ 2 2 _ 2 _ 2 2 2 2
aj=---=a;=0,a5=1anda, , = —a, +a,_, +a,_,+a, ,forn>5.

Now we consider a new sequence which is a generalized form of the the Fibonacci-circulant-
Hurwitz sequence of the second kind and is called the generalized Fibonacci-circulant-Hurwitz
sequence. The sequence is defined by integer constants af = --- = af |, = 0, a¥ = 1 and the
recurrence relation

ko ko, ok k k
Upig = —Qp + Qp_ g+ Ay pys+ Ay jg (1

for n > k, where k is a positive integer such that £ > 4.
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From (1), we may write the following matrix:

-1 1 1 1 01
1 00 0 0 O
10 0 0 0
My=[mijl,..=1 0 01 000 ()
0 0 1 00
O 00 --- 010
The matrix Mj, is called the generalized Fibonacci-circulant-Hurwitz matrix.
k+1
Note that det (M) = (=1)""" for k > 4.
By induction on n, we get
4 4 4 4 4
Upyg Opy3t0pyy Opyog Gpyg
4 4 4 4 4
M n __ a’n+3 an+2 + a’n an+1 an+2
( 4) - 4 4 g 4 4 )
an+2 an—l—l an—l an an—l—l
4 4 4 4 4
CLn—&-l an + an—l a’n—l an
-5 5 5 5 5 5 5
Upys Qpygt Quys Qppgt0yyg Qi3 Gy
ab a. - +a a’ . .+ a’ a’® a®
n+4 n+5 n+4 n+3 n+1 n+2 n+3
no__ 5 5 5 5 5 5 5
(Ms)" = | a5 apiqtags apota) @)y a).,
5 5 5 5 5 5 5
an+2 an+3 + an+2 a’n+1 + a’n—l an an—l—l
5 5 5 5 5 5 5
L an+1 a’n+2 + an+1 an + an—? a’n—l an .
and
r k k k k k k k 7
Ap oy gy o1 T Opypg Upyfp—1 t Opipg Opip o Gpip g
ak ak. . +a¥ ak + a* ak ak
n+k—1 n+k n+k—1 n+k—2 n+k—4 n+k—3 n+k—2
n k k k * ok k k k
(Mp)" = | @pspa Qpogytang o (Mp)" app s+ ap s Grip g Gnyg s (3)
k k k k k k k
L an+1 an+2 + an+1 an + Ap_9 ] an, d kxk
for k > 6, where (M},)" is a matrix with k& row and k — 5 column given below:
k k k k k k k k k
A T o AT A S AT e B AT A O ST A s A
k k k k k k k k k
an+k—2 +o At an+3 + an-i—l an+k—2 ot an+4 + an—i—? o an+k—2 + an+k—3 + an+k—5
k k k k k k k k k
a, +ee an—k+4 + an—k+2 Ay, +ee an—k+5 + an—k+3 e Qy, + A, + Qy,_3

Lemma 3.1. The characteristic equation of all the generalized Fibonacci-circulant-Hurwitz
numbers x* + ¥t — 2F=2 — ... — 22 — 1 = 0 does not have multiple roots for k > 4.
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Proof. Let f (z) = o + 281 — 22 — ... — 22 — 1. We easily see that f (1) # 1. Consider
h(x) = (z —1) f (x). Since f (1) # 1, 1 is root but not a multiple root of i (z). Assume that u
a multiple root of 4 (). Then h (u) = 0 and A’ (u) = 0. So we get

(1=K u* +ku®+ (k-7 u*+(4—2k)u+2(k—1)=0.

Using appropriate softwares such as Wolfram Mathematica 10.0 [29], one can see that this last
equation does not have a solution which is a contradiction. This contradiction proves that the

equation f (x) does not have multiple roots. O
If x1, 29, ..., 2, are the eigenvalues of the generalized Fibonacci-circulant-Hurwitz matrix
My, then by Lemma 3.1, it is known that zq, xo, . . .,z are distinct. Let a £ x k& Vandermonde

matrix V* be given by

B (ml)kfl ({1:2)1671 (xk)kfl T
(:El)k—Q ($2)k_2 (xk)k_Q
Vk — .
] ! ! 1]

Now assume that W* () is a (p + 2) x 1 matrix as shown:

(xl)TH*k)fi

wk (Z) _ (x2>n -

(xp+2)n+k—i

and V* (i,7) is a k x k matrix derived from the Vandermonde matrix V'* by replacing the j-th
column of V* by matrix W* (i).

Now we give the Binet formulas for the generalized Fibonacci-circulant-Hurwitz numbers by
the following Theorem.

Theorem 3.1. Let k be a positive integer such that k > 4 and let (My)" = [mgi)} fora > 1,

then
(o) . det Vk (Z,])

Mg = 7k
Proof. Since the eigenvalues of the generalized Fibonacci-circulant-Hurwitz matrix M are
distinct, M, is diagonalizable. Then, we may write M, V* = V¥ D, , where D, = diag(zy, xa, .. .,
). Since det V* #£ 0, we get

(V*) " MyV* = Dy
It will thus be seen that the matrices M, and D, are similar. Then we can write the matrix
equation (M)* V¥ = V¥ (D))" for a > 1. Since (M) = [m(a)] , we get

,L‘ﬂj

i (2l ()2 ) = ()
mz(,oi) (x2) -1 mgg) (xz)kfz 4t ml(’i‘) _ (xz)aﬂgﬂ



So we conclude that
m(a) B det VE (l,j)

2] Vk
foreachi,j =1,2,...,k. O

Thus by Theorem 3.1 and the matrix (M},)", we have the following useful results.

Corollary 3.1. Let a* be the n-th element of the generalized Fibonacci-circulant-Hurwitz

sequence, then
L detVFE(k k) detVF(k—1,k—1)
an et Vk: prng Vk

for k > 4.

Now we consider the combinatorial representations for all the generalized Fibonacci-circulant-
Hurwitz numbers.

Let a k x k companion matrix C' (cy, ¢, . . ., ¢x) be given by
Cc1 Co e Ck
1 0 --- 0
0(61,627...,Ck) =
0 --- 1 0

For more details on the companion type matrices, see [15, 16].

Theorem 3.2 (Chen and Louck [3]). The (i,j) entry 01(3) (c1,¢,...,¢k) in the matrix
C%(cy, o, ..., ck) is given by the following formula:

t: 4+t oot t R
) (eneaa) = 3 AT (BT g @)
’ (1,20t t1+t2++tk tla"‘?tk
302505l

where the summation is over nonnegative integers satisfying t, + 2ty + - - - + ktp, = o — i + J,
(fetie) = (tat+t)!
tl?"'vtk - tl'tk'

ifa=1—].

is a multinomial coefficient, and the coefficients in (4) are defined to be 1

Corollary 3.2. Let k be a positive integer such that k > 4 and let a* be the n-th element of the
generalized Fibonacci-circulant-Hurwitz sequence, then

D D e e rree il A
tttyt -+t toth
(t1,t2...,tx)
_ Z t—1 + Uk X(t1+"‘+tk)
tt by + -+ 1y thy oot

(t1,t2...,tp+2)

where the summation is over nonnegative integers satisfying t, + 2to + - - - + kt = n.

Proof. In Theorem 3.2, if we choose i = j = k and i = j = k — 1, then the proof is immediately
seen from (3). [l
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Definition 3.1. An u X v real matrix A = [a; j is called a contractible matrix in the n-th column

(resp. row) if the n-th column (resp. row) contains exactly two non-zero entries.

Let z;, xo, .. .,x, be row vectors of the matrix A. If A is contractible in the n-th column such
that a,,, # 0,a,, # 0 and 7 # o, then the (v — 1) X (v — 1) matrix A, ,.,, obtained from A by
replacing the 7-th row with a, 2, + a, %, and deleting the o-th row. We call the n-th column
the contraction in the n-th column relative to the 7-th row and the o-th row.

In [2], it was shown that per (A) = per (B) if A is a real matrix of order u > 1 and the matrix
B is a contraction of A.

Let u > k and let a u X u super-diagonal matrix N} = [n.] be given by

( ifi=sandj=s+1forl1 <s<u-—1,
t=sandj=s+2forl <s<u—2,

1 i=sandj=s+k—3forl1<s<u—k+3,

n; i = t=sandj=s+k—1forl <s<u—k+1
and
t=s+1landj=sforl <s<wu-—1,
-1 ifi=sandj=sforl <s < u,
0 otherwise,

where k > 4.
Now we give the permanental representations for the generalized Fibonacci-circulant-Hurwitz
numbers by the following Theorems.

Theorem 3.3. Let a, be the n-th element of the generalized Fibonacci-circulant-Hurwitz

sequence, then
k\ _ &
per (Nu) - au—f—k

foru > k.

Proof. The assertion may be proved by induction on u. Assume that the result hold for any integer
grater than or equal to £. Then we show the equation holds for u + 1. Expanding the per (Nf)
by the Laplace expansion of permanent according to the first row gives us

per (Nij1) = —per (N) +per (Ny_y) + -+ per (Ny_yi5) +per (Ny_pp) -
Since
per (Nz’f) = aﬁJrk? per (fol) = aﬁﬂc—la e, per (fok+3> = aﬁ+3> per <N57k+1) = aﬁ+1ﬂ

by using the recurrence relation of the generalized Fibonacci circulant-Hurwitz numbers, we
obtain per (N ) =af ;. O
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Suppose that u > k and the u x u matrices H¥ = [hf.] and T} = [t¥ ] are defined by

p

ifir=sandj=s+pforl <s<u—k+2,
and1 < p< k-3,
1 t=sandj=s+k—1forl <s<u—k+1

hﬁj: and
t=s+1landj=sforl <s<wu-—1,
-1 ifir=sandj=sforl <s<u—*Fk+1,
. 0 otherwise
and
(u— k) -th
— J/ —
1 1 0 0
1
=0 H ’
_0 -
k> 4.

Using the matrices H) = [h};] and T = [t¥.] and the above results we can give more
general permanental representations.

Theorem 3.4. Foru > k,
per (H{f) =a

u

and
u—1

per (Tf) = Z ak .

T7=0

Proof. Consider the first part of the theorem. We prove this by the induction method. Suppose
that the equation holds for v > k, then we show that the equation holds for v 4 1. If we expand
the per (H k ) by the Laplace expansion of permanent according to the first row, then we get

per (Hfﬂ) = —per (H{f) + per (H{ffl) + -+ per (Hvlj—ms) + per (Hvljkarl)
= —agtag ety s tal gy,

k

Prove the second part of the theorem: Expanding the per (Tf) with respect to the first row,
we can write
per (TY) = per (TY_,) + per (HY_,) .

Thus, by the results and an inductive argument, the proof is easily seen. [
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Using the definition of the generalized Fibonacci-circulant-Hurwitz numbers we find the
generating function g (z) as shown

SCk

1_|_:[;_x2_..._xk72_xk

g9(x)

where k > 4.
Now we investigate an exponential representation for the generalized Fibonacci-circulant-
Hurwitz numbers.

Theorem 3.5. For k > 4, the generalized Fibonacci-circulant-Hurwitz numbers have the
following exponential representation:

n
n=1

g(x):xkexp (Zx_n(_1+x+_..+xk3+xk1)n).

k

Proof. We consider the generating function g (z) = 1 —z= 7= Since
o
1 =1 ,
ng(z) n<1+x_x2_”__$k—2_xk>
Ing(z) =lna* —In(1+z—2>—- — 2" —2¥)
and
mn(l+z—a*— —2"?—2") = —[p(-14+z+2>+ - +2" 7+

1 _ 2 ... k-3 k—1
+§x2( Iata?4tah =34 )2+“_

1 . i
oot (—l4ata®+ a2
7

it is clear that

In

g(x) _ " k=3 | . k—1\"
v —;E(—1+x+---+x + 2k )", O
Now we consider the sums of all the generalized Fibonacci-circulant-Hurwitz numbers. Let
the & x k matrix M, be as in (2) and let the sums of the generalized Fibonacci-circulant-Hurwitz
numbers from 1 to n, (n > 1) be denoted by S,,, that is,

n
Sy = g a.
i=1

If we define the (k + 1) x (k + 1) matrix Zj as in the following form:

0 --- 0

[ R S

Zk = Mk
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then by using induction on n, we may write

Sn+k71
Z)" = | Sws (M)

Sn
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