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Abstract: The theory of Fibonacci-circulant numbers was introduced by Deveci et al. (see [5]).
In this paper, we define the Fibonacci-circulant-Hurwitz sequence of the second kind by Hurwitz
matrix of the generating function of the Fibonacci-circulant sequence of the second kind and give
a fair generalization of the sequence defined, which we call the generalized Fibonacci-circulant-
Hurwitz sequence. First, we derive relationships between the generalized Fibonacci-circulant-
Hurwitz numbers and the generating matrices for these numbers. Also, we give miscellaneous
properties of the generalized Fibonacci-circulant-Hurwitz numbers such as the Binet formula,
the combinatorial, permanental, determinantal representations, the generating function, the
exponential representation and the sums.
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1 Introduction

The k-step Fibonacci sequence
{
F k
n

}
is defined by initial values F k

0 = F k
1 = F k

k−2 = 0, F k
k−1 = 1

and recurrence relation

F k
n+k = F k

n+k−1 + F k
n+k−2 + · · ·+ F k

n for n ≥ 0.

For detailed information about the k-step Fibonacci sequence, see [9, 21].
In [5], Deveci et al. defined the Fibonacci-circulant sequence of the second kind as shown:

x21 = · · · = x24 = 0, x25 = 1 and x2n = −x2n−3 + x2n−4 − x2n−5 for n ≥ 6.

Note that the characteristic polynomial of the Fibonacci-circulant sequence of the second kind is
as follows:

f (x) = −x5 + x2 + x− 1.

Let an n-th degree real polynomial f be given by

f 2 (x) = c0x
n + c1x

n−1 + · · ·+ cn−1x+ cn.

In [8], the Hurwitz matrix Hn = [hi,j]n×n associated to the polynomial f was defined as shown:

Hn =



c1 c3 c5 · · · · · · · · · 0 0 0

c0 c2 c4 · · · · · · · · ·
...

...
...

0 c1 c3 · · · · · · · · ·
...

...
...

... c0 c2
. . . . . . . . . 0

...
...

... 0 c1
. . . . . . . . . cn

...
...

...
... c0

. . . . . . . . . cn−1 0
...

...
... 0 · · · · · · · · · cn−2 cn

...
...

...
... · · · · · · · · · cn−3 cn−1 0

0 0 0 · · · · · · · · · cn−4 cn−2 cn



.

Consider the k-step homogeneous linear recurrence sequence {an},

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1,

where c0, c1, . . . , ck−1 are real constants. In [9], Kalman derived a number of closed-form
formulas for the sequence {an} by matrix method as follows:

An


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1
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, where

A = [ai,j]k×k =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1

c0 c1 c2 ck−2 ck−1


.

Number theoretic properties such as these obtained from Fibonacci numbers relevant to this
paper have been studied by many authors [1, 4, 7, 11, 12, 20, 23, 27, 28]. Now we define the
generalized Fibonacci-circulant-Hurwitz numbers and then, we obtain their miscellaneous
properties using the generating matrix and the generating function of these numbers.

2 Significance

As it is well-known that recurrence sequences, circulant matrix and Hurwitz matrix appear in
modern research in many fields from mathematics, physics, computer science, architecture to
nature and art (see, for example, [6, 10, 13, 14, 17, 18, 19, 22, 24, 25, 26]). This paper is expanded
the concept to the generalized Fibonacci-circulant-Hurwitz sequence which is defined by using
circulant and Hurwitz matrices.

3 The main resutls

By the polynomial f 2 (x), we can write the following Hurwitz matrix:

M2 =


0 1 −1 0 0

1 0 1 0 0

0 0 1 −1 0

0 1 0 1 0

0 0 1 0 −1

 .

Using the matrix M2, we define the Fibonacci-circulant-Hurwitz sequence of the second kind
as shown:

a21 = · · · = a24 = 0, a25 = 1 and a2n+1 = −a2n + a2n−1 + a2n−2 + a2n−4 for n ≥ 5.

Now we consider a new sequence which is a generalized form of the the Fibonacci-circulant-
Hurwitz sequence of the second kind and is called the generalized Fibonacci-circulant-Hurwitz
sequence. The sequence is defined by integer constants ak1 = · · · = akk−1 = 0, akk = 1 and the
recurrence relation

akn+1 = −akn + akn−1 + · · ·+ akn−k+3 + akn−k+1 (1)

for n ≥ k, where k is a positive integer such that k ≥ 4.
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From (1), we may write the following matrix:

Mk = [mi,j]k×k =



−1 1 1 · · · 1 0 1

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0


. (2)

The matrix Mk is called the generalized Fibonacci-circulant-Hurwitz matrix.
Note that det (Mk) = (−1)k+1 for k ≥ 4.
By induction on n, we get

(M4)
n =


a4n+4 a4n+3 + a4n+1 a4n+2 a4n+3

a4n+3 a4n+2 + a4n a4n+1 a4n+2

a4n+2 a4n+1 + a4n−1 a4n a4n+1

a4n+1 a4n + a4n−1 a4n−1 a4n

 ,

(M5)
n =


a5n+5 a5n+6 + a5n+5 a5n+4 + a5n+2 a5n+3 a5n+4

a5n+4 a5n+5 + a5n+4 a5n+3 + a5n+1 a5n+2 a5n+3

a5n+3 a5n+4 + a5n+3 a5n+2 + a5n a5n+1 a5n+2

a5n+2 a5n+3 + a5n+2 a5n+1 + a5n−1 a5n a5n+1

a5n+1 a5n+2 + a5n+1 a5n + a5n−2 a5n−1 a5n


and

(Mk)
n =


akn+k akn+k+1 + akn+k akn+k−1 + akn+k−3 akn+k−2 akn+k−1
akn+k−1 akn+k + akn+k−1 akn+k−2 + akn+k−4 akn+k−3 akn+k−2
akn+k−2 akn+k−1 + akn+k−2 (Mk)

∗ akn+k−3 + akn+k−5 akn+k−4 akn+k−3
...

...
...

...
...

akn+1 akn+2 + akn+1 akn + akn−2 akn−1 akn


k×k

(3)

for k ≥ 6, where (Mk)
∗ is a matrix with k row and k − 5 column given below:

akn+k−1 + · · ·+ akn+4 + akn+2 akn+k−1 + · · ·+ akn+5 + akn+3 · · · akn+k−1 + akn+k−2 + akn+k−4
akn+k−2 + · · ·+ akn+3 + akn+1 akn+k−2 + · · ·+ akn+4 + akn+2 · · · akn+k−2 + akn+k−3 + akn+k−5

...
... . . . ...

akn + · · ·+ akn−k+4 + akn−k+2 akn + · · ·+ akn−k+5 + akn−k+3 · · · akn + akn−1 + akn−3

 .

Lemma 3.1. The characteristic equation of all the generalized Fibonacci-circulant-Hurwitz
numbers xk + xk−1 − xk−2 − · · · − x2 − 1 = 0 does not have multiple roots for k ≥ 4.
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Proof. Let f (x) = xk + xk−1 − xk−2 − · · · − x2 − 1. We easily see that f (1) 6= 1. Consider
h (x) = (x− 1) f (x). Since f (1) 6= 1, 1 is root but not a multiple root of h (x). Assume that u
a multiple root of h (x). Then h (u) = 0 and h′ (u) = 0. So we get

(1− k)u4 + ku3 + (k − 7)u2 + (4− 2k)u+ 2 (k − 1) = 0.

Using appropriate softwares such as Wolfram Mathematica 10.0 [29], one can see that this last
equation does not have a solution which is a contradiction. This contradiction proves that the
equation f (x) does not have multiple roots.

If x1, x2, . . . , xk are the eigenvalues of the generalized Fibonacci-circulant-Hurwitz matrix
Mk, then by Lemma 3.1, it is known that x1, x2, . . . , xk are distinct. Let a k × k Vandermonde
matrix V k be given by

V k =


(x1)

k−1 (x2)
k−1 · · · (xk)

k−1

(x1)
k−2 (x2)

k−2 · · · (xk)
k−2

...
... . . . ...

x1 x2 · · · xk
1 1 · · · 1

 .

Now assume that W k (i) is a (p+ 2)× 1 matrix as shown:

W k (i) =


(x1)

n+k−i

(x2)
n+k−i

...
(xp+2)

n+k−i


and V k (i, j) is a k × k matrix derived from the Vandermonde matrix V k by replacing the j-th
column of V k by matrix W k (i).

Now we give the Binet formulas for the generalized Fibonacci-circulant-Hurwitz numbers by
the following Theorem.

Theorem 3.1. Let k be a positive integer such that k ≥ 4 and let (Mk)
α =

[
m

(α)
i,j

]
for α ≥ 1,

then

m
(α)
i,j =

detV k (i, j)

V k
.

Proof. Since the eigenvalues of the generalized Fibonacci-circulant-Hurwitz matrix Mk are
distinct,Mk is diagonalizable. Then, we may writeMkV

k = V kDk, whereDk = diag(x1, x2, . . . ,

xk). Since detV k 6= 0, we get (
V k
)−1

MkV
k = Dk.

It will thus be seen that the matrices Mk and Dk are similar. Then we can write the matrix
equation (Mk)

α V k = V k (Dk)
α for α ≥ 1. Since (Mk)

α =
[
m

(α)
i,j

]
, we get

m
(α)
i,1 (x1)

k−1 +m
(α)
i,2 (x1)

k−2 + · · ·+m
(α)
i,k = (x1)

α+k−i

m
(α)
i,1 (x2)

k−1 +m
(α)
i,2 (x2)

k−2 + · · ·+m
(α)
i,k = (x2)

α+k−i

...
m

(α)
i,1 (xk)

k−1 +m
(α)
i,2 (xk)

k−2 + · · ·+m
(α)
i,k = (xk)

α+k−i
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So we conclude that

m
(α)
i,j =

detV k (i, j)

V k

for each i, j = 1, 2, . . . , k.

Thus by Theorem 3.1 and the matrix (Mk)
n, we have the following useful results.

Corollary 3.1. Let akn be the n-th element of the generalized Fibonacci-circulant-Hurwitz
sequence, then

akn =
detV k (k, k)

V k
=

detV k (k − 1, k − 1)

V k

for k ≥ 4.

Now we consider the combinatorial representations for all the generalized Fibonacci-circulant-
Hurwitz numbers.

Let a k × k companion matrix C (c1, c2, . . . , ck) be given by

C (c1, c2, . . . , ck) =


c1 c2 · · · ck
1 0 · · · 0
... . . . . . . ...
0 · · · 1 0

 .
For more details on the companion type matrices, see [15, 16].

Theorem 3.2 (Chen and Louck [3]). The (i, j) entry c
(α)
i,j (c1, c2, . . . , ck) in the matrix

Cα(c1, c2, . . . , ck) is given by the following formula:

c
(α)
i,j (c1, c2, . . . , ck) =

∑
(t1,t2,...,tk)

tj + tj+1 + · · ·+ tk
t1 + t2 + · · ·+ tk

×
(
t1 + · · ·+ tk
t1, . . . , tk

)
ct11 · · · c

tk
k (4)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + ktk = α − i + j,(
t1+···+tk
t1,...,tk

)
= (t1+···+tk)!

t1!···tk!
is a multinomial coefficient, and the coefficients in (4) are defined to be 1

if α = i− j.

Corollary 3.2. Let k be a positive integer such that k ≥ 4 and let akn be the n-th element of the
generalized Fibonacci-circulant-Hurwitz sequence, then

akn =
∑

(t1,t2...,tk)

tk
t1 + t2 + · · ·+ tk

×
(
t1 + · · ·+ tk
t1, . . . , tk

)

=
∑

(t1,t2...,tp+2)

tk−1 + tk
t1 + t2 + · · ·+ tk

×
(
t1 + · · ·+ tk
t1, . . . , tk

)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · ·+ ktk = n.

Proof. In Theorem 3.2, if we choose i = j = k and i = j = k− 1, then the proof is immediately
seen from (3).
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Definition 3.1. An u× v real matrix A = [ai,j] is called a contractible matrix in the n-th column
(resp. row) if the n-th column (resp. row) contains exactly two non-zero entries.

Let x1, x2, . . .,xu be row vectors of the matrix A. If A is contractible in the n-th column such
that aτ,n 6= 0, aσ,n 6= 0 and τ 6= σ, then the (u− 1) × (v − 1) matrix Aτ,σ:n obtained from A by
replacing the τ -th row with aτ,nxσ + aσ,nxτ and deleting the σ-th row. We call the n-th column
the contraction in the n-th column relative to the τ -th row and the σ-th row.

In [2], it was shown that per (A) = per (B) if A is a real matrix of order u > 1 and the matrix
B is a contraction of A.

Let u ≥ k and let a u× u super-diagonal matrix Nk
u =

[
nki,j
]

be given by

npi,j =



1

if i = s and j = s+ 1 for 1 ≤ s ≤ u− 1,
i = s and j = s+ 2 for 1 ≤ s ≤ u− 2,

...
...

i = s and j = s+ k − 3 for 1 ≤ s ≤ u− k + 3,
i = s and j = s+ k − 1 for 1 ≤ s ≤ u− k + 1

and
i = s+ 1 and j = s for 1 ≤ s ≤ u− 1,

−1 if i = s and j = s for 1 ≤ s ≤ u,
0 otherwise,

where k ≥ 4.
Now we give the permanental representations for the generalized Fibonacci-circulant-Hurwitz

numbers by the following Theorems.

Theorem 3.3. Let an be the n-th element of the generalized Fibonacci-circulant-Hurwitz
sequence, then

per
(
Nk
u

)
= aku+k

for u ≥ k.

Proof. The assertion may be proved by induction on u. Assume that the result hold for any integer
grater than or equal to k. Then we show the equation holds for u + 1. Expanding the per

(
Nk
u

)
by the Laplace expansion of permanent according to the first row gives us

per
(
Nk
u+1

)
= −per

(
Nk
u

)
+ per

(
Nk
u−1
)
+ · · ·+ per

(
Nk
u−k+3

)
+ per

(
Nk
u−k+1

)
.

Since

per
(
Nk
u

)
= aku+k, per

(
Nk
u−1
)
= aku+k−1, . . . , per

(
Nk
u−k+3

)
= aku+3, per

(
Nk
u−k+1

)
= aku+1,

by using the recurrence relation of the generalized Fibonacci circulant-Hurwitz numbers, we
obtain per

(
Nk
u+1

)
= aku+k+1.
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Suppose that u > k and the u× u matrices Hk
u =

[
hki,j
]

and T ku =
[
tki,j
]

are defined by

hki,j =



1

if i = s and j = s+ ρ for 1 ≤ s ≤ u− k + 2,
and 1 ≤ ρ ≤ k − 3,

i = s and j = s+ k − 1 for 1 ≤ s ≤ u− k + 1

and
i = s+ 1 and j = s for 1 ≤ s ≤ u− 1,

−1 if i = s and j = s for 1 ≤ s ≤ u− k + 1,

0 otherwise

.

and

(u− k) -th
↓

T ku =


1 · · · 1 0 · · · 0

1

0 Hk
u−1

...
0


,

k ≥ 4.
Using the matrices Hk

u =
[
hki,j
]

and T ku =
[
tki,j
]

and the above results we can give more
general permanental representations.

Theorem 3.4. For u > k,

per
(
Hk
u

)
= aku ,

and

per
(
T ku
)
=

u−1∑
τ=0

akτ .

Proof. Consider the first part of the theorem. We prove this by the induction method. Suppose
that the equation holds for u > k, then we show that the equation holds for u + 1. If we expand
the per

(
Hk
u

)
by the Laplace expansion of permanent according to the first row, then we get

per
(
Hk
u+1

)
= −per

(
Hk
u

)
+ per

(
Hk
u−1
)
+ · · ·+ per

(
Hk
u−k+3

)
+ per

(
Hk
u−k+1

)
= −aku + aku−1 + · · ·+ aku−k+3 + aku−k+1

= aku+1.

Prove the second part of the theorem: Expanding the per
(
T ku
)

with respect to the first row,
we can write

per
(
T ku
)
= per

(
T ku−1

)
+ per

(
Hp
u−1
)
.

Thus, by the results and an inductive argument, the proof is easily seen.
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Using the definition of the generalized Fibonacci-circulant-Hurwitz numbers we find the
generating function g (x) as shown

g (x) =
xk

1 + x− x2 − · · · − xk−2 − xk

where k ≥ 4.
Now we investigate an exponential representation for the generalized Fibonacci-circulant-

Hurwitz numbers.

Theorem 3.5. For k ≥ 4, the generalized Fibonacci-circulant-Hurwitz numbers have the
following exponential representation:

g (x) = xk exp

(
∞∑
n=1

xn

n

(
−1 + x+ · · ·+ xk−3 + xk−1

)n)
.

Proof. We consider the generating function g (x) = xk

1+x−x2−···−xk−2−xk . Since

ln g (x) = ln

(
xk

1 + x− x2 − · · · − xk−2 − xk

)
,

ln g (x) = lnxk − ln
(
1 + x− x2 − · · · − xk−2 − xk

)
and

ln
(
1 + x− x2 − · · · − xk−2 − xk

)
= −[x

(
−1 + x+ x2 + · · ·+ xk−3 + xk−1

)
+
1

2
x2(−1+x+x

2+···+xk−3+xk−1)2 + · · ·

+
1

i
xi
(
−1 + x+ x2 + · · ·+ xk−3 + xk−1

)i
+ · · · ],

it is clear that

ln
g (x)

xk
=
∞∑
n=1

xn

n

(
−1 + x+ · · ·+ xk−3 + xk−1

)n
.

Now we consider the sums of all the generalized Fibonacci-circulant-Hurwitz numbers. Let
the k × k matrix Mk be as in (2) and let the sums of the generalized Fibonacci-circulant-Hurwitz
numbers from 1 to n, (n > 1) be denoted by Sn, that is,

Sn =
n∑
i=1

aki .

If we define the (k + 1)× (k + 1) matrix Zk as in the following form:

Zk =


1 0 · · · 0

1

0 Mk

...
0

 ,
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then by using induction on n, we may write

(Zk)
n =


1 0 · · · 0

Sn+k−1
Sn+k−1 (Mk)

n

...
Sn

 .
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