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1 Introduction

The well-known Pell sequence {Pn} is defined by the following recurrence relation:

Pn+2 = 2Pn+1 + Pn for n ≥ 0 in which P0 = 0 and P1 = 1.
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There are many important generalizations of the Fibonacci sequence. The Fibonacci p-sequence
[22, 23] is one of them:

Fp (n) = Fp (n− 1) + Fp (n− p− 1) for p = 1, 2, 3, . . . and n > p

in which Fp (0) = 0, Fp (1) = · · · = Fp (p) = 1. When p = 1, the Fibonacci p-sequence {Fp (n)}
is reduced to the usual Fibonacci sequence {Fn}.

It is easy to see that the characteristic polynomials of the Pell sequence and Fibonacci
p-sequence are f1 (x) = x2 − 2x − 1 and f2 (x) = xp+1 − xp − 1, respectively. We use these in
the next section.

Let the (n+ k)-th term of a sequence be defined recursively by a linear combination of the
preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1,

in which c0, c1, . . . , ck−1 are real constants. In [12], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows:

Let the matrix A be defined by

A = [ai,j]k×k =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1

c0 c1 c2 · · · ck−2 ck−1


,

then

An


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1


for n ≥ 0.

Several authors have used homogeneous linear recurrence relations to deduce miscellaneous
properties for a plethora of sequences: see for example, [1,4,8–11,19–21,24]. In [5–7,14–16,22,
23,25], the authors defined some linear recurrence sequences and gave their various properties by
matrix methods.

In the present paper, we discuss connections between the Pell and Fibonacci p-numbers.
Firstly, we define the Fibonacci–Pell p-sequence and then we study recurrence relation among
this sequence, Pell and Fibonacci p-sequences. In addition, we obtain their generating matrices,
Binet formulas, permanental, determinantal, combinatorial, exponential representations, and we
derive a formula for the sums of the Fibonacci–Pell p-numbers.
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2 Main results

Now we define the Fibonacci–Pell p-sequence
{
F P,p
n

}
by the following homogeneous linear

recurrence relation for any given p (3, 4, 5, . . .) and n ≥ 0

F P,p
n+p+3 = 3F P,p

n+p+2 − F
P,p
n+p+1 − F

P,p
n+p + F P,p

n+2 − 2F P,p
n+1 − F P,p

n , (1)

in which F P,p
0 = · · · = F P,p

p+1 = 0 and F P,p
p+2 = 1.

First, we consider the relationship between the Fibonacci–Pell p-sequence which is defined
above, Pell, and Fibonacci p-sequences.

Theorem 2.1. Let Pn, F3 (n) andF P,3
n be the n-th Pell number, Fibonacci 3-number, and Fibonacci–

Pell 3-numbers, respectively. Then, for n ≥ 0

Pn+2 = F P,3
n+5 + 2F P,3

n+3 + F3 (n+ 2) + F3 (n) .

Proof. The assertion may be proved by induction on n. It is clear that

P2 = F P,3
5 + 2F P,3

3 + F3 (2) + F3 (0) = 2.

Suppose that the equation holds for n ≥ 1. Then we must show that the equation holds for n+1.
Since the characteristic polynomial of Fibonacci–Pell p-sequence

{
F P,p
n

}
, is

g (x) = xp+3 − 3xp+2 + xp+1 + xp − x2 + 2x+ 1

and
g (x) = f1 (x) f2 (x) ,

where f1 (x) and f2 (x) are the characteristic polynomials of Pell sequence and Fibonacci
p-sequence, respectively, we obtain the following relations:

Pn+6 = 3Pn+5 − Pn+4 − Pn+3 + Pn+2 − 2Pn+1 − Pn

and

F3 (n+ 6) = 3F3 (n+ 5)− F3 (n+ 4)− F3 (n+ 3) + F3 (n+ 2)− 2F3 (n+ 1)− F3 (n)

for n ≥ 1. Thus, the conclusion is obtained.

Theorem 2.2. Let Pn and F P,p
n be the n-th Pell number and Fibonacci–Pell p-numbers. Then, for

n ≥ 0 and p ≥ 3.
i. Let p be a positive integer, then

Pn = F P,p
n+p+1 − F

P,p
n+p − F P,p

n .

ii. If p is odd, then

Pn + Pn+1 = F P,p
n+p+2 − F

P,p
n+p − F

P,p
n+1 − F P,p

n

and
iii. If p is odd, then

n∑
i=0

(
F P,p
i + Pi

)
= F P,p

n+p+1.
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Proof. Consider the Case ii. The assertion may be proved by induction on n. Then for p = 3,
it is clear that P0 + P1 = F P,3

5 − F P,3
3 − F P,3

1 − F P,3
0 = 1. Suppose that the equation holds for

n > 0. Then we must show that the equation holds for n+1. Since the characteristic polynomial
of the Pell sequence {Pn}, is

f1 (x) = x2 − 2x− 1,

we obtain the following relations:

Pn+6 = 3Pn+5 − Pn+4 − Pn+3 + Pn+2 − 2Pn+1 − Pn

for n ≥ 1. Now we consider the proof for the case p > 3. Suppose that the equation holds for
p = 2α + 1, (α ∈ N) and n ≥ 0, it is clear that

Pn + Pn+1 = F P,2α+1
n+2α+3 − F

P,2α+1
n+2α+1 − F

P,2α+1
n+1 − F P,2α+1

n .

Then we must show that the equation holds for p = 2α + 3, (α ∈ N). For n = 0, it is clear that

P0 + P1 = F P,2α+1
2α+5 − F P,2α+1

2α+3 − F P,2α+1
1 − F P,2α+1

0 = 1.

The assertion may be proved again by induction on n. Assume that the equation holds for n > 0.
Then we must show that the equation holds for n + 1. Since the characteristic polynomial of the
Pell sequence {Pn}, is

f1 (x) = x2 − 2x− 1,

we obtain the following relations:

Pn+2α+6 = 3Pn+2α+5 − Pn+2α+4 − Pn+2α+3 + Pn+2 − 2Pn+1 − Pn

for n ≥ 1. Thus, the conclusion is obtained.
There is a similar proof for Case i and Case iii.

By the recurrence relation (1), we have



F P,p
n+p+3

F P,p
n+p+2

F P,p
n+p+1

...

F P,p
n+1


=



3 −1 −1 0 · · · 0 0 1 −2 −1
1 0 0 0 · · · 0 0 0 0 0

0 1 0 0 · · · 0 0 0 0 0

0 0 1 0 · · · 0 0 0 0 0

0 0 0 1 · · · 0 0 0 0 0
...

...
...

... . . . ...
...

...
...

...
0 0 0 0 · · · 1 0 0 0 0

0 0 0 0 · · · 0 1 0 0 0

0 0 0 0 · · · 0 0 1 0 0

0 0 0 0 · · · 0 0 0 1 0





F P,p
n+p+2

F P,p
n+p+1

F P,p
n+p

...

F P,p
n



for the Fibonacci–Pell p-sequence
{
F P,p
n

}
. Letting
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Dp =



3 −1 −1 0 · · · 0 0 1 −2 −1
1 0 0 0 · · · 0 0 0 0 0

0 1 0 0 · · · 0 0 0 0 0

0 0 1 0 · · · 0 0 0 0 0

0 0 0 1 · · · 0 0 0 0 0
...

...
...

... . . . ...
...

...
...

...
0 0 0 0 · · · 1 0 0 0 0

0 0 0 0 · · · 0 1 0 0 0

0 0 0 0 · · · 0 0 1 0 0

0 0 0 0 · · · 0 0 0 1 0


(p+3)×(p+3)

,

the companion matrix Dp = [di,j](p+3)×(p+3) is said to be the Fibonacci–Pell p-matrix. For more
details on the companion type matrices, see [17,18]. It can be readily established by mathematical
induction that for p ≥ 3 and n ≥ 3p− 1,

(Dp)
n =



FP,p
n+p+2 Fp (n− p+ 1)− FP,p

n+p+1 − F
P,p
n+p Fp (n− p+ 2)− FP,p

n+p+1 Fp (n− p+ 3) · · ·

FP,p
n+p+1 Fp (n− p)− FP,p

n+p − F
P,p
n+p−1 Fp (n− p+ 1)− FP,p

n+p Fp (n− p+ 2) · · ·

FP,p
n+p Fp (n− p− 1)− FP,p

n+p−1 − F
P,p
n+p−2 Fp (n− p)− FP,p

n+p−1 Fp (n− p+ 1) · · · D∗
p

...
...

...
...

. . .

FP,p
n+1 Fp (n− 2p)− FP,p

n − FP,p
n−1 Fp (n− 2p+ 1)− FP,p

n Fp (n− 2p+ 2) · · ·

FP,p
n Fp (n− 2p− 1)− FP,p

n−1 − F
P,p
n−2 Fp (n− 2p)− FP,p

n−1 Fp (n− 2p+ 1) · · ·


,

where

D∗
p =



Fp (n) Fp (n− p+ 3) + Fp (n− p) + Fp (n− p− 1) + · · ·+ Fp (n− 2p+ 3)− FP,p
n+p+2 −FP,p

n+p+1

Fp (n− 1) Fp (n− p+ 2) + Fp (n− p− 1) + Fp (n− p− 2) + · · ·+ Fp (n− 2p+ 2)− FP,p
n+p+1 −FP,p

n+p

Fp (n− 2) Fp (n− p+ 1) + Fp (n− p− 2) + Fp (n− p− 3) + · · ·+ Fp (n− 2p+ 1)− FP,p
n+p −FP,p

n+p−1

...
...

...

Fp (n− p− 1) Fp (n− 2p+ 2) + Fp (n− 2p− 1) + Fp (n− 2p− 2) + · · ·+ Fp (n− 3p+ 2)− FP,p
n+1 −FP,p

n

Fp (n− p− 2) Fp (n− 2p+ 1) + Fp (n− 2p− 2) + Fp (n− 2p− 3) + · · ·+ Fp (n− 3p+ 1)− FP,p
n −FP,p

n−1


.

In [22], Stakhov defined the generalized Fibonacci p-matrix Qp and derived the n-th power of
the matrixQp. In [13], Kılıc gave a Binet formula for the Fibonacci p-numbers by matrix method.
Now we concentrate on finding another Binet formula for the Fibonacci–Pell p-numbers by the
aid of the matrix (Dp)

n.

Lemma 2.3. The characteristic equation of all the Fibonacci–Pell p-numbers

xp+3 − 3xp+2 + xp+1 + xp − x2 + 2x+ 1 = 0

does not have multiple roots for p ≥ 3.
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Proof. It is clear that xp+3− 3xp+2+xp+1+xp−x2+2x+1 = (xp+1 − xp − 1) (x2 − 2x− 1).
In [13], it was shown that the equation xp+1 − xp − 1 = 0 does not have multiple roots for
p > 1. It is easy to see that the roots of the equation x2 − 2x − 1 = 0 are 1 +

√
2 and 1 −

√
2.

Since
(
1 +
√
2
)p+1 −

(
1 +
√
2
)p − 1 6= 0 and

(
1−
√
2
)p+1 −

(
1−
√
2
)p − 1 6= 0, the equation

xp+3 − 3xp+2 + xp+1 + xp − x2 + 2x+ 1 = 0 does not have multiple roots for p ≥ 3.

Let α1, α2, . . . , αp+3 be the roots of the equation xp+3− 3xp+2+xp+1+xp−x2+2x+1 = 0

and let Vp be a (p+ 3)× (p+ 3) Vandermonde matrix as follows:

Vp =


(α1)

p+2 (α2)
p+2 . . . (αp+3)

p+2

(α1)
p+1 (α2)

p+1 . . . (αp+3)
p+1

...
... . . . ...

α1 α2 . . . αp+3

1 1 . . . 1


.

Assume that Vp (i, j) is a (p+ 3) × (p+ 3) matrix derived from the Vandermonde matrix Vp by
replacing the j-th column of Vp by Wp (i), where, Wp (i) is a (p+ 3)× 1 matrix as follows:

Wp (i) =


(α1)

n+p+3−i

(α2)
n+p+3−i

...
(αp+3)

n+p+3−i

 .

Theorem 2.4. Let p be a positive integer such that p ≥ 3 and let (Dp)
n = d

(p,n)
i,j for n ≥ 1, then

d
(p,n)
i,j =

detVp (i, j)

detVp
.

Proof. Since the equation xp+3 − 3xp+2 + xp+1 + xp − x2 + 2x+ 1 = 0 does not have multiple
roots for p ≥ 3, the eigenvalues of the Fibonacci–Pell p-matrix Dp are distinct. Then, it is clear
that Dp is diagonalizable. Let Ap = diag (α1, α2, . . . , αp+3), then we may write DpVp = VpAp.
Since the matrix Vp is invertible, we obtain the equation (Vp)

−1DpVp = Ap. Therefore, Dp is
similar to Ap; hence, (Dp)

n Vp = Vp (Ap)
n for n ≥ 1. So we have the following linear system of

equations: 

d
(p,n)
i,1 (α1)

p+2 + d
(p,n)
i,2 (α1)

p+1 + · · ·+ d
(p,n)
i,p+3 = (α1)

n+p+3−i

d
(p,n)
i,1 (α2)

p+2 + d
(p,n)
i,2 (α2)

p+1 + · · ·+ d
(p,n)
i,p+3 = (α2)

n+p+3−i

...

d
(p,n)
i,1 (αp+3)

p+2 + d
(p,n)
i,2 (αp+3)

p+1 + · · ·+ d
(p,n)
i,p+3 = (αp+3)

n+p+3−i .

Then we conclude that

d
(p,n)
i,j =

detVp (i, j)

detVp

for each i, j = 1, 2, . . . , p+ 3.
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Thus by Theorem 2.4 and the matrix (Dp)
n, we have the following useful result for the

Fibonacci–Pell p-numbers.

Corollary 2.1. Let p be a positive integer such that p ≥ 3 and let F P,p
n be the n-th element of the

Fibonacci–Pell p-sequence, then

F P,p
n =

detVp (p+ 3, 1)

detVp

and

F P,p
n = −detVp (p+ 2, p+ 3)

detVp

for n ≥ 1.

It is easy to see that the generating function of the Fibonacci–Pell p-sequence
{
F P,p
n

}
is as

follows:

g (x) =
xp+2

1− 3x+ x2 + x3 − xp+1 + 2xp+2 + xp+3
,

where p ≥ 3.
Then we can give an exponential representation for the Fibonacci–Pell p-numbers by the aid

of the generating function with the following Theorem.

Theorem 2.5. The Fibonacci–Pell p-numbers
{
F P,p
n

}
have the following exponential

representation:

g (x) = xp+2 exp

(
∞∑
i=1

(x)i

i

(
3− x− x2 + xp − 2xp+1 − xp+2

)i) ,

where p ≥ 3.

Proof. Since

ln g (x) = ln xp+2 − ln
(
1− 3x+ x2 + x3 − xp+1 + 2xp+2 + xp+3

)
and

− ln
(
1− 3x+ x2 + x3 − xp+1 + 2xp+2 + xp+3

)
= −[−x

(
3− x− x2 + xp − 2xp+1 − xp+2

)
−

1

2
x2
(
3− x− x2 + xp − 2xp+1 − xp+2

)2 − · · ·
−1

i
xi
(
3− x− x2 + xp − 2xp+1 − xp+2

)i − · · · ]
it is clear that

g (x) = xp+2 exp

(
∞∑
i=1

(x)i

i

(
3− x− x2 + xp − 2xp+1 − xp+2

)i)

and by a simple calculation, we obtain the conclusion.
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Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =


k1 k2 · · · kv
1 0 · · · 0
... . . . . . . ...
0 · · · 1 0

 .

Theorem 2.6. (Chen and Louck [3]) The (i, j) entry k
(n)
i,j (k1, k2, . . . , kv) in the matrix

Kn (k1, k2, . . . , kv) is given by the following formula:

k
(n)
i,j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

tj + tj+1 + · · ·+ tv
t1 + t2 + · · ·+ tv

×
(
t1 + · · ·+ tv
t1, . . . , tv

)
kt11 · · · ktvv , (2)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = n − i + j,(
t1+···+tv
t1,...,tv

)
= (t1+···+tv)!

t1!···tv ! is a multinomial coefficient, and the coefficients in (2) are defined to be 1

if n = i− j.

Then we can give other combinatorial representations than for the Fibonacci–Pell p-numbers
by the following Corollary.

Corollary 2.2. Let F P,p
n be the n-th Fibonacci–Pell p-number for n ≥ 1. Then

i.

F P,p
n =

∑
(t1,t2,...,tp+3)

(
t1 + t2 + · · ·+ tp+3

t1, t2, · · · , tp+3

)
3t1 (−2)tp+2 (−1)t2+t3+tp+3 ,

where the summation is over nonnegative integers satisfying

t1 + 2t2 + · · ·+ (p+ 3) tp+3 = n− p− 2.

ii.

F P,p
n = −

∑
(t1,t2,...,tp+3)

tp+3

t1 + t2 + · · ·+ tp+3

×
(
t1 + t2 + · · ·+ tp+3

t1, t2, · · · , tp+3

)
3t1 (−2)tp+2 (−1)t2+t3+tp+3 ,

where the summation is over nonnegative integers satisfying t1+2t2+ · · ·+(p+ 3) tp+3 = n+1.

Proof. If we take i = p + 3, j = 1 for the Case i. and i = p + 2, j = p + 3 for the Case ii. in
Theorem 2.6, then we can directly see the conclusions from (Dp)

n.

Now we consider the relationship between the Fibonacci–Pell p-numbers and the permanent
of a certain matrix which is obtained using the Fibonacci–Pell p-matrix (Dp)

n.

Definition 2.1. A u× v real matrix M = [mi,j] is called a contractible matrix in the k-th column
(respectively, row) if the k-th column (respectively, row) contains exactly two non-zero entries.

Suppose that x1, x2, . . .,xu are row vectors of the matrix M. If M is contractible in the k-th
column such that mi,k 6= 0,mj,k 6= 0 and i 6= j, then the (u− 1)× (v − 1) matrix Mij:k obtained
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fromM by replacing the i-th row withmi,kxj+mj,kxi and deleting the j-th row. The k-th column
is called the contraction in the k-th column relative to the i-th row and the j-th row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order
α > 1 and N is a contraction of M.

Now we concentrate on finding relationships among the Fibonacci–Pell p-numbers and the
permanents of certain matrices which are obtained by using the generating matrix of the
Fibonacci–Pell p-numbers. Let EF,P

m,p = [ei,j] be the m×m super-diagonal matrix, defined by

ei,j =



3 if i = τ and j = τ for 1 ≤ τ ≤ m,

1
if i = τ and j = τ + p for 1 ≤ τ ≤ m− p
and i = τ + 1 and j = τ for 1 ≤ τ ≤ m− 1,

−1
if i = τ and j = τ + 1 for 1 ≤ τ ≤ m− 1,
i = τ and j = τ + 2 for 1 ≤ τ ≤ m− 2

and i = τ and j = τ + p+ 2 for 1 ≤ τ ≤ m− p− 2,

−2 if i = τ and j = τ + p+ 1 for 1 ≤ τ ≤ m− p− 1,

0 otherwise.

for m ≥ p+ 3. Then we have the following Theorem.

Theorem 2.7. For m ≥ p+ 3 ,
perEF,P

m,p = F P,p
m+p+2.

Proof. Let us consider matrix EF,P
m,p and let the equation hold for m ≥ p+ 3. Then we show that

the equation holds for m+ 1. If we expand the perEF,P
m,p by the Laplace expansion of permanent

with respect to the first row, then we obtain

perEF,P
m+1,p = 3perEF,P

m,p−perE
F,P
m−1,p−perE

F,P
m−2,p+perEF,P

m−p,p−2 perE
F,P
m−p−1,p−perE

F,P
m−p−2,p.

Since

perEF,P
m,p = F P,p

m+p+2,

perEF,P
m−1,p = F P,p

m+p+1,

perEF,P
m−2,p = F P,p

m+p,

perEF,P
m−p,p = F P,p

m+2,

perEF,P
m−p−1,p = F P,p

m+1,

perEF,P
m−p−2,p = F P,p

m ,

we easily obtain that perEF,P
m+1,p = F P,p

m+p+3. So the proof is complete.
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Let F F,P
m,p = [fi,j] be the m×m matrix, defined by

fi,j =



3 if i = τ and j = τ for 1 ≤ τ ≤ m− p,

1

if i = τ and j = τ + p for 1 ≤ τ ≤ m− p,
i = τ and j = τ for m− p+ 1 ≤ τ ≤ m,

and i = τ + 1 and j = τ for 1 ≤ τ ≤ m− p− 1,

−1
if i = τ and j = τ + 1 for 1 ≤ τ ≤ m− p,
i = τ and j = τ + 2 for 1 ≤ τ ≤ m− p,
and i = τ and j = τ + p+ 2 for 1 ≤ τ ≤ m− p− 2,

−2 if i = τ and j = τ + p+ 1 for 1 ≤ τ ≤ m− p− 1,

0 otherwise

,

for m ≥ p+ 3. Then we have the following Theorem.

Theorem 2.8. For m ≥ p+ 3 ,
perF F,P

m,p = F P,p
m+2.

Proof. Let us consider matrix F F,P
m,p and let the equation hold for m ≥ p+ 3. Then we show that

the equation holds for m+ 1. If we expand the perF F,P
m,p by the Laplace expansion of permanent

with respect to the first row, then we obtain

perF F,P
m+1,p = 3perF F,P

m,p −perF
F,P
m−1,p−perF

F,P
m−2,p+perF F,P

m−p,p−2 perF
F,P
m−p−1,p−perF

F,P
m−p−2,p.

Since
perF F,P

m,p = F P,p
m+2,

perF F,P
m−1,p = F P,p

m+1,

perF F,P
m−2,p = F P,p

m ,

perF F,P
m−p,p = F P,p

m−p+2,

perF F,P
m−p−1,p = F P,p

m−p+1,

perF F,P
m−p−2,p = F P,p

m−p,

we easily obtain that perF F,P
m+1,p = F P

m+3. So the proof is complete.

Assume that GF,P
m,p = [gi,j] be the m×m matrix, defined by

(m− 3) -rd
↓

GF,P
m,p =



1 · · · 1 0 0 0

1

0
... F F,P

m−1,p

0

0


, for m > p+ 3,

then we have the following results.
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Theorem 2.9. For m > p+ 3,

perGF,P
m,p =

m+1∑
i=0

F P,p
i .

Proof. If we extend perGF,P
m,p with respect to the first row, we write

perGF,P
m,p = perGF,P

m−1,p + perF F,P
m−1,p.

Thus, by the results and an inductive argument, the proof is easily seen.

A matrix M is called convertible if there is an n × n (1,−1)-matrix K such that
perM = det (M ◦K), where M ◦K denotes the Hadamard product of M and K.

Now we give relationships among the Fibonacci–Pell p-numbers and the determinants of
certain matrices which are obtained by using the matrices EF,P

m,p , F F,P
m,p and GF,P

m,p. Let m > p + 3

and let R be the m×m matrix, defined by

R =



1 1 1 · · · 1 1

−1 1 1 · · · 1 1

1 −1 1 · · · 1 1
... . . . ... . . . ...

...
1 · · · 1 −1 1 1

1 · · · 1 1 −1 1


.

Corollary 2.3. For m > p+ 3,

det
(
EF,P
m,p ◦R

)
= F P,p

m+p+2,

det
(
F F,P
m,p ◦R

)
= F P,p

m+2,

and

det
(
GF,P
m,p ◦R

)
=

m+1∑
i=0

F P,p
i .

Proof. Since perEF,P
m,p = det

(
EF,P
m,p ◦R

)
, perF F,P

m,p = det
(
F F,P
m,p ◦R

)
and perGF,P

m,p

= det
(
GF,P
m,p ◦R

)
for m > p + 3, by Theorem 2.7, Theorem 2.8 and Theorem 2.9, we have

the conclusion.

Now we consider the sums of the Fibonacci–Pell p-numbers. Let

Sn =
n∑
i=0

F P
i

for n ≥ 0 and let UF,P and (UF,P )
n be the (p+ 4)× (p+ 4) matrix such that

UF,P =



1 0 0 · · · 0 0

1

0
... Dp

0

0


.
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If we use induction on n, then we obtain

(UF,P )
n =



1 0 0 · · · 0 0

Sn+p+1

Sn+p4
... (Dp)

n

Sn
Sn−1


.
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