Fatih Yılmaz and Pınar Eldutar

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 4, Pages 143—149

DOI: 10.7546/nntdm.2019.25.4.143-149

**Download full paper: PDF, 157 Kb**

## Details

### Authors and affiliations

Fatih Yılmaz

*Department of Mathematics, Polatlı Art and Science Faculty,
Ankara Haci Bayram Veli University, 06900 Ankara, Turkey
*

Pınar Eldutar

*Department of Mathematics,
Gazi University, 06900 Ankara, Turkey
*

### Abstract

In this short note, we consider adjacency matrices of ladder graphs. Then we obtain permanental polynomials, eigenvalues and some other properties of adjacency matrix of the graph.

### Keywords

- Permanental polynomial
- Fibonacci numbers
- Eigenvalue

### 2010 Mathematics Subject Classification

- 15A15
- 11B39

### References

- Borowiecki, M., & Jozwiak, T. (1982). Computing the permanental polynomial of a multigraph, Discuss. Math., 5, 9–16.
- Cahil, N. D., D’Errico, J. R., & Spence, J. P. (2003). Complex factorizations of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 41 (1), 13–19.
- Codenotti, B., & Resta, G. (2002). Computation of spare circulant permanents via

determinants, Linear Alg. Appl., 355, 15–34. - Cvetkocic, D. M., Doob, M., Gutman, I., & Torgasev, A. (1988). Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, p. 123.
- Eldutar, P., & Yilmaz, F. (2016). On linear algebra of adjacency matrices for one type of graph, ICAMA-2016, Ankara, Turkey.
- Hosoya, H. (2004). Sequences of polyomino and polyhex graphs whose perfect matching numbers are Fibonacci or Lucas numbers: The Golden family graphs of a new category, Forma, 19, 405–412.
- Kalman, D. (1982). Generalized Fibonacci numbers by matrix methods, The Fibonacci Quarterly, 20 (1), 73–76.
- Kasum, D., Trinajstic, N., & Gutman, I. (1981). Chemical graph theory. III, On the permanental polynomial, Croat. Chem. Acta, 54, 321–328.
- Merris, R., Rebman K. R., & Watkins, W. (1981). Permanental polynomials of graphs, Lin. Algebra Appl, 38, 273–288.
- Rimas, J. (2006). On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of even order—II, Applied Mathematics and Computation, 172, 245–251.
- Rosenfeld, V. R., & Gutman, I. (1989). A novel approach to graph polynomials, Match-Commun. Math. Comput. Chem., 24, 191–199.
- Schwenk, A. J. (1974). Computing the Characteristic Polynomial of a Graph, Springer–Verlag, Berlin, pp. 153–172.
- Shannon, A., Turner, J., & Atanassov, K. (1991). A generalized tableau associated with colored convolution trees, Discrete Mathematics, 92 (1–3), 329–340.
- Strang, G. (2009). Introduction to Linear Algebra, Wellesley-Cambridge Press.
- Turner, J. (1968). Generalized matrix functions and the graph isomorphism problem, SIAM J. Appl. Math., 16, 520–526.
- Vasudev, C. (2006). Graph Theory with Applications, New Age International Limited Publishers, New Delhi.
- Zhang, H., & Ding, F. (2013). On the Kronecker products and their applications, Hindawi Publishing Corporation Journal of Applied Mathematics, Article ID 296185.

## Related papers

## Cite this paper

Yılmaz, F. & Eldutar, P. (2019). On bipartite graphs and the Fibonacci numbers. Notes on Number Theory and Discrete Mathematics, 25(4), 143-149, doi: 10.7546/nntdm.2019.25.4.143-149.