Aditya Ghosh
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 4, Pages 1–7
DOI: 10.7546/nntdm.2019.25.4.1-7
Full paper (PDF, 182 Kb)
Details
Authors and affiliations
Aditya Ghosh
Indian Statistical Institute, Kolkata, India
Abstract
Let be the sequence of primes and
, where
runs over the primes not exceeding
, be the Chebyshev
-function. In this note, we derive lower and upper bounds for
by comparing it with
and deduce the asymptotic formula
Keywords
- Chebyshev theta function
- Geometric mean of first n primes
- Prime numbers
2010 Mathematics Subject Classification
- 11A41
- 11A25
References
- Axler, C. (2018). On the arithmetic and geometric means of the first n prime numbers, Mediterr. J. Math., 15 (3), Art. 93, 21 pages.
- Bonse, H. (1907). Uber eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung, Archiv Math. Phys., 3 (12), 292–295.
- Dusart, P. (1998). Autour de la fonction qui compte le nombre de nombres premiers, PhD Thesis, Limoges.
- Dusart, P. (1999). The k-th prime is greater than k(ln k + ln ln k − 1) for k ≥ 2, Math. Comp., 68 (225), 411–415.
- Hassani, M. (2005). Approximation of the product p1p2…pn, RGMIA Research Report Collection, 8 (2), Article 20.
- Massias, J.-P., & Robin, G. (1996). Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Theor. Nombres de Bordeaux, 8, 213–238.
- Panaitopol, L. (2000). An inequality involving prime numbers, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 11, 33–35.
- Posa, L. (1960). Uber eine Eigenschaft der Primzahlen, Mat. Lapok, 11, 124–129.
- Robin, G. (1983). Estimation de la fonction de Tchebychef θ sur le k-ieme nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith., 42 (4), 367–389..
Related papers
- Wang, C.-T. (2025). On an inequality about Euler’s totient function. Notes on Number Theory and Discrete Mathematics, 31(2), 299-304.
Cite this paper
Ghosh, A. (2019). An asymptotic formula for the Chebyshev theta function. Notes on Number Theory and Discrete Mathematics, 25(4), 1-7, DOI: 10.7546/nntdm.2019.25.4.1-7.