Fügen Torunbalcı Aydın
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 3, Pages 111–125
DOI: 10.7546/nntdm.2019.25.3.111-125
Full paper (PDF, 200 Kb)
Details
Authors and affiliations
Fügen Torunbalcı Aydın ![]()
Department of Mathematical Engineering
Faculty of Chemical and Metallurgical Engineering
Yildiz Technical University
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
Abstract
In this paper, dual-complex k-Pell numbers and dual-complex k-Pell quaternions are defined. Also, some algebraic properties of dual-complex k-Pell numbers and quaternions which are connected with dual-complex numbers and k-Pell numbers are investigated. Furthermore, Honsberger Identity, d’Ocagne’s Identity, Binet’s Formula, Cassini’s Identity and Catalan’s Identity for these quaternions are given.
Keywords
- Dual number
- Dual-complex number
- k-Pell number
- Dual-complex k-Pell number
- k-Pell quaternion
- Dual-complex k-Pell quaternion
2010 Mathematics Subject Classification
- 11B37
- 20G20
- 11R52
References
- Aydın Torunbalcı, F., & Yuce, S. (2016). Dual Pell quaternions, Journal of ultra scientist of physical sciences, 28, 328–339.
- Aydın Torunbalcı, F., Koklu, K., & Yuce, S. (2017). Generalized dual Pell quaternions. Notes on Number Theory and Discrete Mathematics, 23 (4), 66–84.
- Aydın Torunbalcı, F., & Koklu, K. (2017). On Generalizations of the Pell Sequence, arXiv preprint arXiv:1711.06260, 2017.
- Aydın Torunbalcı, F. Dual-complex Pell quaternions, (submitted), 2018.
- Catarino, P., Vasco, P., Borges, A., Campos, H., & Aires, A. P. (2013). Some basic properties and a two-by-two matrix involving the k-Pell Numbers, Int. Journal of Math. Analysis, 7 (45), 2209–2215.
- Catarino, P. (2013). On some identities and generating functions for k-Pell numbers, Int. Journal of Math. Analysis, 7 (38), 1877–1884.
- Catarino, P., & Vasco, P. (2013). Modified k-Pell sequence: some identities and ordinary generating function, Appl. Math. Sci., 7 (121), 6031–6037.
- Catarino, P. (2016). The modified Pell and the modified k-Pell quaternions and octonions, Advances in Applied Clifford Algebras, 26 (2), 577–590.
- Catarino, P., & Vasco, P. (2017) On dual k-Pell quaternions and octonions, Mediterranean Journal of Mathematics, 14 (2), 75.
- Gauthier, N. (1998). Identities for a Class of Sums Involving Horadam’s Generalized Numbers {Wn}, The Fibonacci Quarterly, 36, 295–304.
- Gul, K. (2018). k-Pell Kuaterniyonlar ve k-Pell–Lucas Kuaterniyonlar uzerine. Igdır Universitesi Fen Bilimleri Enstitusu Dergisi, 8 (1), 23–35.
- Gungor, M. A., & Azak, A. Z. (2017). Investigation of dual-complex Fibonacci, dual-complex Lucas numbers and their properties, Advances in Applied Clifford Algebras, 27 (4), 3083–3096.
- Horadam, A. F. (1971). Pell identities, The Fibonacci Quarterly, 9 (3), 245–252.
- Horadam, A. F., & Mahon, J. (1985). Pell and Pell–Lucas polynomials, The Fibonacci Quarterly, 23 (1), 7–20.
- Horadam, A. F. (1993). Quaternion Recurrence Relations, Ulam Quarterly, 2 (2), 23–33.
- Majernik, V. (1996). Multicomponent number systems, Acta Pyhsica Polonica A, 90 (3), 491–498.
- Messelmi, F. (2015). Dual-complex numbers and their holomorphic functions, working paper or preprint. Available online at:
https://hal.archives-ouvertes.fr/hal-01114178. - Szynal-Liana, A., &Wloch, I. (2016). The Pell quaternions and the Pell octonions, Advances in Applied Clifford Algebras, 26 (1), 435–440.
- Tokeser, U, Unal, Z., & Bilgici, G. (2017). Split Pell and Pell–Lucas quaternions, Advances in Applied Clifford Algebras, 27 (2), 1881–1893.
- Vasco, P., Catarino, P., Campos, H., Aires, A. P., & Borges, A. (2015). k-Pell, k-Pell–Lucas and modified k-Pell numbers: some identities and norms of Hankel matrices, CM-Centro de Matematica, 9 (1), 31–37.
Related papers
Cite this paper
Torunbalcı Aydın, F. (2019). Dual-complex k-Pell quaternions. Notes on Number Theory and Discrete Mathematics, 25(3), 111-125, DOI: 10.7546/nntdm.2019.25.3.111-125.
