Fügen Torunbalcı Aydın, Kevser Köklü and Salim Yüce

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 23, 2017, Number 4, Pages 66—84

**Download full paper: PDF, 233 Kb**

## Details

### Authors and affiliations

Fügen Torunbalcı Aydın

*Yildiz Technical University
Faculty of Chemical and Metallurgical Engineering
Department of Mathematical Engineering
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
*

Kevser Köklü

*Yildiz Technical University
Faculty of Chemical and Metallurgical Engineering
Department of Mathematical Engineering
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
*

Salim Yüce

*Yildiz Technical University
Faculty of Arts and Sciences, Department of Mathematics
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
*

### Abstract

In this paper, we defined the generalized dual Pell quaternions. Also, we investigated the relations between the generalized dual Pell quaternions. Furthermore, we gave the Binet’s formulas and Cassini-like identities for these quaternions.

### Keywords

- Pell number
- Pell quaternion
- Lucas quaternion
- Dual quaternion

### AMS Classification

- 11R52
- 11B37
- 20G20

### References

- Hamilton, W. R. (1866) Elements of Quaternions. Longmans, Green and Co., London.
- Clifford, W. K. (1873) Preliminary Sketch of Bi-quaternions. Proc. London Math. Soc., 4, 381–395.
- Horadam, A. F. (1961) A Generalized Fibonacci Sequence. The American Mathematical Monthly. 68 (5), 455–459.
- Horadam, A. F. (1963) Complex Fibonacci Numbers and Fibonacci Quaternions. American Math. Monthly. 70 (3), 289–291.
- Iyer, M. R. (1969) A Note on Fibonacci Quaternions., The Fibonacci Quaterly. 7 (3), 225– 229.
- Iyer, M. R. (1969) Some Results on Fibonacci Quaternions. The Fibonacci Quarterly. 7, 201–210.
- Verner, E. & Hoggatt, Jr.(1969) Fibonacci and Lucas Numbers. The Fibonacci Association.
- Swamy, M. N. (1973) On Generalized Fibonacci Quaternions. The Fibonacci Quarterly, 11(5), 547–550.
- Iakin, A. L. (1977) Generalized Quaternions of Higher Order. The Fibonacci Quarterly. 15 (4), 343–346.
- Iakin, A. L.(1977) Generalized Quaternions with Quaternion Components. The Fibonacci Quarterly. 15 , 350–352.
- Harman, C. J. (1981) Complex Fibonacci Numbers. The Fibonacci Quarterly. 19 (1), 82–86.
- Horadam, A. F. (1993) Quaternion Recurrence Relations. Ulam Quarterly. 2 (2), 23–33.
- Kula L., Yaylı Y. (2007) Split Quaternions and Rotations in Semi-Euclidean Space. J. Korean Math. Soc., 44 (6), 1313–1327.
- Ata, E., & Yaylı, Y. (2009) Dual quaternions and dual projective spaces. Chaos Solitons Fractals, 40(3), 1255–1263.
- Halıcı, S. (2012) On Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 22(2), 321–327.
- Halıcı, S. (2013) On Complex Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 23, 105–112.
- Akyigit, M., Kösal, H. H., & Tosun, M. (2013) Split Fibonacci Quaternions. Adv. Appl.Clifford Algebras., 23(3), 535–545.
- Majernik, V. (2006) Quaternion formulation of the Galilean space-time transformation. Acta Phy. Slovaca., 56 (1), 9–14.
- Ercan, Z. & Yüce, S. (2011) On properties of the dual quaternions. Eur. J. Pure Appl. Math., 4(2), 142–146.
- Nurkan, K. S., & Güven, I. A. (2015) Dual Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 25(2), 403-414.
- Yüce, S., & Torunbalcı Aydın, F. (2016) A New Aspect of Dual Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 26(2), 873–884.
- Yüce, S., Torunbalcı, Aydın, F. (2016) Generalized Dual Fibonacci Quaternions. Applied Mathematics E-Notes, 16, 276–289.
- Torunbalcı, Aydın F., Köklü, K. On Generalizations of the Pell Sequence. (submitted 2017) Available online: arXiv:1711.06260[math.CO].
- Torunbalcı Aydın, F. & Yüce, S. (2016) Dual Pell Quaternions. Journal of Ultra Scientist of Physical Sciences, 28(7), 328–339.
- Cimen, C. B., & Ipek, A. (2016) On Pell Quaternions and Pell–Lucas Quaternions. Adv. Appl. Clifford Algebras. 26, 39–51.
- Szynal-Liana, A., & Wloch, I. (2016) The Pell Quaternions and the Pell Octanions. Adv. Appl. Clifford Algebras. 26, 435–440.
- Horadam A. F. (1971) Pell Identities. The Fibonacci Quarterly, 9 (3), 245–263.
- Horadam A. F. & Bro. J. M. Mahon. (1985) Pell and Pell–Lucas Polynomials. The Fibonacci Quarterly, 23 (1), 17–20.

## Related papers

- Torunbalcı Aydın, F. (2019). Dual-complex k-Pell quaternions. Notes on Number Theory and Discrete Mathematics, 25(3), 111-125.

## Cite this paper

APAAydın, F. G., Köklü, K., & Yüce, S. (2017). Generalized Dual Pell Quaternions, Notes on Number Theory and Discrete Mathematics, 23(4), 66-84.

ChicagoAydın, Fügen Torunbalcı, Kevser Köklü and Salim Yüce. “Generalized Dual Pell Quaternions.” Notes on Number Theory and Discrete Mathematics 23, no. 4 (2017): 66-84.

MLAAydın, Fügen Torunbalcı, Kevser Köklü and Salim Yüce. “Generalized dual Pell quaternions.” Notes on Number Theory and Discrete Mathematics 23.4 (2017): 66-84. Print.