Generalized dual Pell quaternions

Fügen Torunbalcı Aydın, Kevser Köklü and Salim Yüce
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 23, 2017, Number 4, Pages 66—84
Download full paper: PDF, 233 Kb

Details

Authors and affiliations

Fügen Torunbalcı Aydın
Yildiz Technical University
Faculty of Chemical and Metallurgical Engineering
Department of Mathematical Engineering
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey

Kevser Köklü
Yildiz Technical University
Faculty of Chemical and Metallurgical Engineering
Department of Mathematical Engineering
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey

Salim Yüce
Yildiz Technical University
Faculty of Arts and Sciences, Department of Mathematics
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey

Abstract

In this paper, we defined the generalized dual Pell quaternions. Also, we investigated the relations between the generalized dual Pell quaternions. Furthermore, we gave the Binet’s formulas and Cassini-like identities for these quaternions.

Keywords

  • Pell number
  • Pell quaternion
  • Lucas quaternion
  • Dual quaternion

AMS Classification

  • 11R52
  • 11B37
  • 20G20

References

  1. Hamilton, W. R. (1866) Elements of Quaternions. Longmans, Green and Co., London.
  2. Clifford, W. K. (1873) Preliminary Sketch of Bi-quaternions. Proc. London Math. Soc., 4, 381–395.
  3. Horadam, A. F. (1961) A Generalized Fibonacci Sequence. The American Mathematical Monthly. 68 (5), 455–459.
  4. Horadam, A. F. (1963) Complex Fibonacci Numbers and Fibonacci Quaternions. American Math. Monthly. 70 (3), 289–291.
  5. Iyer, M. R. (1969) A Note on Fibonacci Quaternions., The Fibonacci Quaterly. 7 (3), 225– 229.
  6. Iyer, M. R. (1969) Some Results on Fibonacci Quaternions. The Fibonacci Quarterly. 7, 201–210.
  7. Verner, E. & Hoggatt, Jr.(1969) Fibonacci and Lucas Numbers. The Fibonacci Association.
  8. Swamy, M. N. (1973) On Generalized Fibonacci Quaternions. The Fibonacci Quarterly, 11(5), 547–550.
  9. Iakin, A. L. (1977) Generalized Quaternions of Higher Order. The Fibonacci Quarterly. 15 (4), 343–346.
  10. Iakin, A. L.(1977) Generalized Quaternions with Quaternion Components. The Fibonacci Quarterly. 15 , 350–352.
  11. Harman, C. J. (1981) Complex Fibonacci Numbers. The Fibonacci Quarterly. 19 (1), 82–86.
  12. Horadam, A. F. (1993) Quaternion Recurrence Relations. Ulam Quarterly. 2 (2), 23–33.
  13. Kula L., Yaylı Y. (2007) Split Quaternions and Rotations in Semi-Euclidean Space. J. Korean Math. Soc., 44 (6), 1313–1327.
  14. Ata, E., & Yaylı, Y. (2009) Dual quaternions and dual projective spaces. Chaos Solitons Fractals, 40(3), 1255–1263.
  15. Halıcı, S. (2012) On Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 22(2), 321–327.
  16. Halıcı, S. (2013) On Complex Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 23, 105–112.
  17. Akyigit, M., Kösal, H. H., & Tosun, M. (2013) Split Fibonacci Quaternions. Adv. Appl.Clifford Algebras., 23(3), 535–545.
  18. Majernik, V. (2006) Quaternion formulation of the Galilean space-time transformation. Acta Phy. Slovaca., 56 (1), 9–14.
  19. Ercan, Z. & Yüce, S. (2011) On properties of the dual quaternions. Eur. J. Pure Appl. Math., 4(2), 142–146.
  20. Nurkan, K. S., & Güven, I. A. (2015) Dual Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 25(2), 403-414.
  21. Yüce, S., & Torunbalcı Aydın, F. (2016) A New Aspect of Dual Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 26(2), 873–884.
  22. Yüce, S., Torunbalcı, Aydın, F. (2016) Generalized Dual Fibonacci Quaternions. Applied Mathematics E-Notes, 16, 276–289.
  23. Torunbalcı, Aydın F., Köklü, K. On Generalizations of the Pell Sequence. (submitted 2017) Available online: arXiv:1711.06260[math.CO].
  24. Torunbalcı Aydın, F. & Yüce, S. (2016) Dual Pell Quaternions. Journal of Ultra Scientist of Physical Sciences, 28(7), 328–339.
  25. Cimen, C. B., & Ipek, A. (2016) On Pell Quaternions and Pell–Lucas Quaternions. Adv. Appl. Clifford Algebras. 26, 39–51.
  26. Szynal-Liana, A., & Wloch, I. (2016) The Pell Quaternions and the Pell Octanions. Adv. Appl. Clifford Algebras. 26, 435–440.
  27. Horadam A. F. (1971) Pell Identities. The Fibonacci Quarterly, 9 (3), 245–263.
  28. Horadam A. F. & Bro. J. M. Mahon. (1985) Pell and Pell–Lucas Polynomials. The Fibonacci Quarterly, 23 (1), 17–20.

Related papers

Cite this paper

APA

Aydın, F. G., Köklü, K., & Yüce, S. (2017). Generalized Dual Pell Quaternions, Notes on Number Theory and Discrete Mathematics, 23(4), 66-84.

Chicago

Aydın, Fügen Torunbalcı, Kevser Köklü and Salim Yüce. “Generalized Dual Pell Quaternions.” Notes on Number Theory and Discrete Mathematics 23, no. 4 (2017): 66-84.

MLA

Aydın, Fügen Torunbalcı, Kevser Köklü and Salim Yüce. “Generalized dual Pell quaternions.” Notes on Number Theory and Discrete Mathematics 23.4 (2017): 66-84. Print.

Comments are closed.