Generalized dual Pell quaternions

Fügen Torunbalcı Aydın ${ }^{*}, 1$, Kevser Köklüi ${ }^{1}$ and Salim Yüce ${ }^{2}$
${ }^{1}$ Yildiz Technical University
Faculty of Chemical and Metallurgical Engineering
Department of Mathematical Engineering
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
e-mails: faydin@yildiz.edu.tr* ozkoklu@yildiz.edu.tr
${ }^{2}$ Yildiz Technical University
Faculty of Arts and Sciences, Department of Mathematics
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
email: sayuce@yildiz.edu.tr
* Corresponding author

Received: 6 January 2017
Accepted: 29 October 2017

Abstract

In this paper, we defined the generalized dual Pell quaternions. Also, we investigated the relations between the generalized dual Pell quaternions. Furthermore, we gave the Binet's formulas and Cassini-like identities for these quaternions.

Keywords: Pell number, Pell quaternion, Lucas quaternion, Dual quaternion.
AMS Classification: 11R52, 11B37, 20G20.

1 Introduction

The real quaternions are a number system which extends to the complex numbers. They are first described by Irish mathematician William Rowan Hamilton in 1843.

Hamilton [1] introduced the set of real quaternions which can be represented as

$$
\begin{equation*}
H=\left\{q=q_{0}+i q_{1}+j q_{2}+k q_{3} \mid q_{0}, q_{1}, q_{2}, q_{3} \in \mathbb{R}\right\} \tag{1.1}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j .
$$

Several authors worked on different quaternions and their generalizations. ([2-22, 24-26]). In 2013, Akyiğit et al. [17] defined split Fibonacci and split Lucas quaternions and obtained some identities for them. Complex split quaternions were defined by Kula and Yayli [13] in 2007.

In 1961, Horadam [3] firstly introduced the generalized Fibonacci sequence $\left(H_{n}\right)$ and used this sequence in 1963, Horadam [4] defined the n-th Fibonacci quaternion which can be represented as

$$
\begin{equation*}
Q_{F}=\left\{Q_{n}=F_{n}+i F_{n+1}+j F_{n+2}+k F_{n+3} \mid F_{n}, n-t h \text { Fibonacci number }\right\} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
i^{2}= & j^{2}=k^{2}=i j k=-1, \quad i j=-j i=k, \quad j k=-k j=i, \\
& k i=-i k=j
\end{aligned}
$$

and $n \geq 1$.
In 1969, Iyer [5, 6] derived many relations for the Fibonacci quaternions.
In 1973, Swamy [8] considered generalized Fibonacci quaternions as a new quaternion as follows:

$$
\begin{equation*}
P_{n}=H_{n}+i H_{n+1}+j H_{n+2}+k H_{n+3} \tag{1.3}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
H_{n}=H_{n-1}+H_{n-2} \\
H_{1}=p \\
H_{2}=p+q \\
H_{n}=(p-q) F_{n}+q F_{n+1}, n \geq 1
\end{array}\right.
$$

where H_{n} is the $n-t h$ generalized Fibonacci number that is defined in [4].
(See [8] for generalized Fibonacci quaternions).
In 1977, Iakin $[9,10]$ introduced higher order quaternions and gave some identities for these quaternions.

In 1993, Horadam [12] extend to quaternions to the complex Fibonacci numbers defined by Harman [11].

In 2006, Majernik [18] defined dual quaternions as follows:

$$
H_{\mathbb{D}}=\left\{\begin{array}{c}
Q=a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}, i^{2}=j^{2}=k^{2}=i j k=0 \tag{1.4}\\
i j=-j i=j k=-k j=k i=-i k=0
\end{array}\right\} .
$$

In 2009, Ata and Yaylı [14] defined dual quaternions with dual numbers coefficient ($a+$ $\left.\varepsilon b, a, b \in \mathbb{R}, \varepsilon^{2}=0, \varepsilon \neq 0\right)$ as follows:

$$
\begin{equation*}
H(\mathbb{D})=\left\{Q=A+B i+C j+D k \mid A, B, C, D \in \mathbb{D}, i^{2}=j^{2}=k^{2}=-1=i j k\right\} \tag{1.5}
\end{equation*}
$$

In 2014, Nurkan and Güven [20] defined dual Fibonacci quaternions as follows:

$$
\begin{equation*}
H(\mathbb{D})=\left\{\tilde{Q}_{n}=\tilde{F}_{n}+i \tilde{F}_{n+1}+j \tilde{F}_{n+2}+k \tilde{F}_{n+3} \mid \tilde{F}_{n}=F_{n}+\epsilon F_{n+1}, \epsilon^{2}=0, \epsilon \neq 0\right\} \tag{1.6}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=i j k=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

$n \geq 1$ and $\tilde{Q}_{n}=Q_{n}+\varepsilon Q_{n+1}$. Essentially, these quaternions in equations (1.5) and (1.6) must be called dual coefficient quaternion and dual coefficient Fibonacci quaternions, respectively. For more details on dual quaternions, see [19]. It is clear that $H(\mathbb{D})$ and $H_{\mathbb{D}}$ are different sets.

In 2016, Yüce and Torunbalcı Aydın [21] defined dual Fibonacci quaternions as follows:

$$
\begin{equation*}
H_{\mathbb{D}}=\left\{Q_{n}=F_{n}+i F_{n+1}+j F_{n+2}+k F_{n+3} \mid F_{n}, n \text {-th Fibonacci number }\right\}, \tag{1.7}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=i j k=0, \quad i j=-j i=j k=-k j=k i=-i k=0 .
$$

In 2016, Yüce and Torunbalcı Aydın [22] defined generalized dual Fibonacci quaternions as follows:

$$
\begin{equation*}
Q_{\mathbb{D}}=\left\{\mathbb{D}_{\mathbf{n}}=H_{n}+i H_{n+1}+j H_{n+2}+k H_{n+3} \mid H_{n}, n-\right.\text {-th } \tag{1.8}
\end{equation*}
$$

Generalized Fibonacci number\}
where

$$
i^{2}=j^{2}=k^{2}=i j k=0, \quad i j=-j i=j k=-k j=k i=-i k=0 .
$$

In 1971, Horadam studied on the Pell and Pell-Lucas sequences and he gave Cassini-like formula as follows [27]:

$$
\begin{equation*}
P_{n+1} P_{n-1}-P_{n}^{2}=(-1)^{n} \tag{1.9}
\end{equation*}
$$

and Pell identities

$$
\left\{\begin{array}{l}
P_{r} P_{n+1}+P_{r-1} P_{n}=P_{n+r}, \tag{1.10}\\
P_{n}\left(P_{n+1}+P_{n-1}\right)=P_{2 n}, \\
P_{2 n+1}+P_{2 n}=2 P_{n+1}^{2}-2 P_{n}^{2}-(-1)^{n} \\
P_{n}^{2}+P_{n+1}^{2}=P_{2 n+1}, \\
P_{n}^{2}+P_{n+3}^{2}=5\left(P_{n+1}^{2}+P_{n+2}^{2}\right), \\
P_{n+a} P_{n+b}-P_{n} P_{n+a+b}=(-1)^{n} P_{n} P_{n+a+b}, \\
P_{-n}=(-1)^{n+1} P_{n}
\end{array}\right.
$$

In 1985, Horadam and Mohan [28] obtained Cassini-like formula as follows:

$$
\begin{equation*}
q_{n+1} q_{n-1}-q_{n}^{2}=8(-1)^{n+1} \tag{1.11}
\end{equation*}
$$

First the idea to consider Pell quaternions it was suggested by Horadam in paper [12].
In 2017 (arXiv), Torunbalcı Aydın and Köklü [23] defined generalized Pell sequence as follows:

$$
\left\{\begin{array}{l}
\mathbb{P}_{0}=q, \mathbb{P}_{1}=p, \mathbb{P}_{2}=2 p+q, p q \in \mathbb{Z} \tag{1.12}\\
\mathbb{P}_{n}=2 P_{n-1}+\mathbb{P}_{n-2}, n \geq 2 \\
\text { or } \\
\mathbb{P}_{n}=(p-2 q) P_{n}+q P_{n+1}=p P_{n}+q P_{n-1}
\end{array}\right.
$$

where \mathbb{P}_{n} is the n-th generalized Pell number that defined in [23] as follows:

$$
\begin{equation*}
\left(\mathbb{P}_{n}\right): q, p, 2 p+q, 5 p+2 q, 12 p+5 q, 29 p+12 q, \ldots, p P_{n}+q P_{n-1}, \ldots \tag{1.13}
\end{equation*}
$$

In 2016, Torunbalcı Aydın and Yüce [24] defined dual Pell quaternions and dual Pell-Lucas quaternions as follows respectively:

$$
\begin{equation*}
P_{D}=\left\{D_{n}^{P}=P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3} \mid P_{n} n \text {-th Pell number }\right\}, \tag{1.14}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=i j k=0, \quad i j=-j i=j k=-k j=k i=-i k=0
$$

and

$$
\begin{align*}
& p_{D}=\left\{D_{n}^{p}=q_{n}+i q_{n+1}+j q_{n+2}+k q_{n+3} \mid q_{n} n \text {-thPell-Lucas number }\right\} \tag{1.15}\\
& \quad i^{2}=j^{2}=k^{2}=i j k=0, i j=-j i=j k=-k j=k i=-i k=0 .
\end{align*}
$$

Here, the Pell-Lucas sequence $\left(q_{n}\right)$ and q_{n} which is the n-th term of the dual Pell-Lucas quaternion sequence $\left(D_{n}^{q}\right)$ are defined by the following recurrence relations:

$$
\begin{gather*}
\left(q_{n}\right): 2,2,6,14,34,82,198,478,1154,2786, \ldots, q_{n}, \ldots \\
\left\{\begin{array}{l}
q_{n}=2 q_{n-1}+q_{n-2}, n \geq 3 \\
q_{0}=2, q_{1}=2, q_{2}=6
\end{array}\right. \tag{1.16}
\end{gather*}
$$

In 2016, Çimen and İpek [25] worked on Pell quaternions and Pell-Lucas quaternions and defined as follows respectively:

$$
\begin{equation*}
Q P_{n}=\left\{Q P_{n}=P_{n} e_{0}+P_{n+1} e_{1}+P_{n+2} e_{2}+P_{n+3} e_{3} \mid P_{n}, n \text {-th Pell number }\right\} \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
Q P L_{n}=\left\{Q P L_{n}=q_{n} e_{0}+q_{n+1} e_{1}+q_{n+2} e_{2}+q_{n+3} e_{3} \mid q_{n}, n\right. \text {-th } \tag{1.18}
\end{equation*}
$$

Pell-Lucas number\}
where

$$
\left\{\begin{array}{l}
e_{0}^{2}=1, \quad e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1 \\
e_{0} e_{1}=e_{1} e_{0}=e_{1}, e_{0} e_{2}=e_{2} e_{0}=e_{2}, e_{0} e_{3}=e_{3} e_{0}=e_{3} \\
e_{1} e_{2}=-e_{2} e_{1}=e_{3}, e_{2} e_{3}=-e_{3} e_{2}=e_{1}, \quad e_{3} e_{1}=-e_{1} e_{3}=e_{2}
\end{array}\right.
$$

In 2016, Anetta and Iwona [26] worked on the Pell quaternions and the Pell octanions.
In this paper, we define the generalized dual Pell quaternions as follows:

$$
\begin{equation*}
P_{\mathbb{D}}=\left\{\mathbb{D}_{\mathbf{n}}^{\mathbf{P}}=\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3} \mid \mathbb{P}_{n}, n \text {-th Gen.Pell number }\right\} \tag{1.19}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=i j k=0, \quad i j=-j i=j k=-k j=k i=-i k=0 .
$$

Furthermore, we give Binet's Formula and Cassini-like identities for the generalized dual Pell quaternions.

2 Generalized dual Pell quaternions

The generalized Pell sequence \mathbb{P}_{n} is defined as

$$
\left\{\begin{array}{l}
\mathbb{P}_{0}=q, \mathbb{P}_{1}=p, \mathbb{P}_{2}=2 p+q, p, q \in \mathbb{Z} \tag{2.1}\\
\mathbb{P}_{n}=2 \mathbb{P}_{n-1}+\mathbb{P}_{n-2}, n \geq 2 \\
\quad \text { or } \\
\mathbb{P}_{n}=(p-2 q) P_{n}+q P_{n+1}=p P_{n}+q P_{n-1}
\end{array}\right.
$$

Here, P_{n} is the n-th Pell number and \mathbb{P}_{n} is the n-th generalized Pell number that defined in [23] as follows:

$$
\left(\mathbb{P}_{n}\right): q, p, 2 p+q, 5 p+2 q, 12 p+5 q, 29 p+12 q, \ldots, p P_{n}+q P_{n-1}, \ldots
$$

We can define the generalized dual Pell quaternions by using generalized Pell numbers as follows

$$
\begin{equation*}
Q_{\mathbb{D}}=\left\{\mathbb{D}_{n}=\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3} \mid \mathbb{P}_{n}, n \text {-th Gen. Pell number }\right\} \tag{2.2}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=i j k=0, \quad i j=-j i=j k=-k j=k i=-i k=0 .
$$

The scaler and the vector part of $\mathbb{D}^{\mathbf{P}}{ }_{n}$ which is the n-th term of the generalized dual Pell quaternion $\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)$ are denoted by

$$
\begin{equation*}
S_{\mathbb{D} \mathbf{P}_{n}}=\mathbb{P}_{n} \text { and } V_{\mathbb{D}_{n}}=i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3} \tag{2.3}
\end{equation*}
$$

Thus, the generalized dual Pell quaternion $\mathbb{D}_{\mathbf{n}}^{\mathbf{P}}$ is given by $\mathbb{D}^{\mathbf{P}}{ }_{n}=S_{\mathbb{D}^{\mathbf{P}}}^{n}$ $+V_{\mathbb{D}^{\mathbf{P}}}^{n}$. Let $\mathbb{D}^{\mathbf{P}_{1}}{ }_{n}$ and $\mathbb{D}^{\mathbf{P}_{2}}{ }_{n}$ be n-th terms of the generalized dual Pell quaternion sequences $\left(\mathbb{D}^{\mathbf{P}_{1}}\right)$ and $\left(\mathbb{D}^{\mathbf{P}^{2}}{ }_{n}\right)$ such that

$$
\begin{equation*}
\mathbb{D}^{\mathbf{P}_{1}}=\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{D}^{\mathbf{P}_{2}}=\mathbb{K}_{n}+i \mathbb{K}_{n+1}+j \mathbb{K}_{n+2}+k \mathbb{K}_{n+3} \tag{2.5}
\end{equation*}
$$

Then, the addition and subtraction of the generalized dual Pell quaternions is defined by

$$
\begin{align*}
\mathbb{D}^{\mathbf{P}_{1}} \pm \mathbb{D}^{\mathbf{P}_{2}}= & \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
& \pm\left(\mathbb{K}_{n}+i \mathbb{K}_{n+1}+j \mathbb{K}_{n+2}+k \mathbb{K}_{n+3}\right) \\
= & \left(\mathbb{P}_{n} \pm \mathbb{K}_{n}\right)+i\left(\mathbb{P}_{n+1} \pm \mathbb{K}_{n+1}\right)+j\left(\mathbb{P}_{n+2} \pm \mathbb{K}_{n+2}\right) \tag{2.6}\\
& +k\left(\mathbb{P}_{n+3} \pm \mathbb{K}_{n+3}\right) .
\end{align*}
$$

Multiplication of the generalized dual Pell quaternions is defined by

$$
\begin{align*}
\mathbb{D}^{\mathbf{P}_{1}} . \mathbb{D}^{\mathbf{P}_{2}}= & \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
& \left(\mathbb{K}_{n}+i \mathbb{K}_{n+1}+j \mathbb{K}_{n+2}+k \mathbb{K}_{n+3}\right) \tag{2.7}\\
= & \left(\mathbb{P}_{n} \mathbb{K}_{n}\right)+\mathbb{P}_{n}\left(i \mathbb{K}_{n+1}+j \mathbb{K}_{n+2}+k \mathbb{K}_{n+3}\right) \\
& +\left(i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \mathbb{K}_{n} .
\end{align*}
$$

or

$$
\begin{equation*}
\mathbb{D}^{\mathbf{P}_{1}}{ }_{n} \cdot \mathbb{D}^{\mathbf{P}_{2}}{ }_{n}=S_{\mathbb{D}^{\mathbf{P}_{\mathbf{1}_{n}}}} S_{\mathbb{D}^{\mathbf{P}_{\mathbf{2}_{n}}}}+S_{\mathbb{D}^{\mathbf{P}_{1}}} V_{\mathbb{D}^{\mathbf{P}_{\mathbf{2}_{n}}}}+S_{\mathbb{D}^{\mathbf{P}_{\mathbf{2}_{n}}}} V_{\mathbb{D}_{\mathbf{P}_{n}}} . \tag{2.8}
\end{equation*}
$$

The conjugate of generalized dual Pell quaternion $\mathbb{D}_{\mathbf{n}}^{\mathbf{P}}$ is denoted by $\overline{\mathbb{D}_{\mathbf{n}}^{\mathbf{P}}}$ and it is

$$
\begin{equation*}
\overline{\mathbb{D}_{n}}=\mathbb{P}_{n}-i \mathbb{P}_{n+1}-j \mathbb{P}_{n+2}-k \mathbb{P}_{n+3} \tag{2.9}
\end{equation*}
$$

The norm of $\mathbb{D}^{\mathbf{P}}{ }_{n}$ is defined as

$$
\begin{equation*}
\left\|\mathbb{D}^{\mathbf{P}}\right\|^{2}=\mathbb{D}^{\mathbf{P}}{ }_{n} \overline{\mathbb{D}^{\mathbf{P}}}=\left(\mathbb{P}_{n}\right)^{2} . \tag{2.10}
\end{equation*}
$$

Then, we give the following theorem using statements (2.1), (2.2) and the generalized Pell number in [23] as follows

$$
\begin{equation*}
\mathbb{P}_{m} \mathbb{P}_{n+1}+\mathbb{P}_{m-1} \mathbb{P}_{n}=(2 p-2 q) \mathbb{P}_{m+n}-e_{P} P_{m+n} \tag{2.11}
\end{equation*}
$$

where

$$
e_{P}=p^{2}-2 p q-q^{2} .
$$

Theorem 2.1. Let \mathbb{P}_{n} and $\mathbb{D}^{\mathbf{P}}{ }_{n}$ be the $n-$ th terms of generalized Pell sequence $\left(\mathbb{P}_{n}\right)$ and the generalized dual Pell quaternion sequence $\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)$, respectively. In this case, for $n \geq 1$ we can give the following relations:

$$
\begin{align*}
& \mathbb{D}^{\mathbf{P}}{ }_{n}+2 \mathbb{D}^{\mathbf{P}}{ }_{n+1}=\mathbb{D}^{\mathbf{P}}{ }_{n+2} \tag{2.12}\\
&\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)^{2}=2 \mathbb{P}_{n} \mathbb{D}^{\mathbf{P}}{ }_{n}-\left(\mathbb{P}_{n}\right)^{2} \tag{2.13}\\
& \mathbb{D}^{\mathbf{P}}{ }_{n}-i \mathbb{D}^{\mathbf{P}}{ }_{n+1}-j \mathbb{D}^{\mathbf{P}}{ }_{n+2}-k \mathbb{D}^{\mathbf{P}}{ }_{n+3}=\mathbb{P}_{n} \tag{2.14}\\
& \mathbb{D}^{\mathbf{P}}{ }_{n} \mathbb{D}^{\mathbf{P}}{ }_{m}+\mathbb{D}^{\mathbf{P}}{ }_{n+1} \mathbb{D}^{\mathbf{P}}{ }_{m+1}=(2 p-2 q)\left[2 \mathbb{D}^{\mathbf{P}}{ }_{n+m+1}-\mathbb{P}_{n+m+1}\right] \tag{2.15}\\
&-e_{P}\left[2 D_{n+m+1}^{P}-P_{n+m+1}\right] .
\end{align*}
$$

where D_{n+m+1}^{P} is the dual Pell quaternion [24].
Proof. (2.12): By the equations

$$
\begin{equation*}
\mathbb{D}^{\mathbf{P}_{n}}=\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{D}^{\mathbf{P}}{ }_{n+1}=\mathbb{P}_{n+1}+i \mathbb{P}_{n+2}+j \mathbb{P}_{n+3}+k \mathbb{P}_{n+4} \tag{2.17}
\end{equation*}
$$

we get,

$$
\begin{align*}
\mathbb{D}_{n} \mathbf{P}_{n}+2 \mathbb{D}^{\mathbf{P}}{ }_{n+1}= & \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
& +2\left(\mathbb{P}_{n+1}+i \mathbb{P}_{n+2}+j \mathbb{P}_{n+3}+k \mathbb{P}_{n+4}\right) \\
= & \left(\mathbb{P}_{n}+2 \mathbb{P}_{n+1}\right)+i\left(\mathbb{P}_{n+1}+2 \mathbb{P}_{n+2}\right)+j\left(\mathbb{P}_{n+2}+2 \mathbb{P}_{n+3}\right) \\
& +k\left(\mathbb{P}_{n+3}+2 \mathbb{P}_{n+4}\right) \tag{2.18}\\
= & \mathbb{P}_{n+2}+i \mathbb{P}_{n+3}+j \mathbb{P}_{n+4}+k \mathbb{P}_{n+5} \\
= & \mathbb{D}_{\mathbf{n}+\mathbf{2}} .
\end{align*}
$$

(2.13):

$$
\begin{align*}
\left(\mathbb{D}_{n} \mathbf{P}_{n}\right)^{2}= & \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
& \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
= & \left(\mathbb{P}_{n}\right)^{2}+2 i\left(\mathbb{P}_{n} \mathbb{P}_{n+1}\right)+2 j\left(\mathbb{P}_{n} \mathbb{P}_{n+2}\right)+2 k\left(\mathbb{P}_{n} \mathbb{P}_{n+3}\right) \tag{2.19}\\
= & 2 \mathbb{P}_{n} \mathbb{D}_{n}{ }_{n}-\left(\mathbb{P}_{n}\right)^{2}
\end{align*}
$$

(2.14): By using (2.3) and conditions in the equation (2.2), we get

$$
\begin{align*}
\mathbb{D}^{\mathbf{P}_{n}}-i \mathbb{D}^{\mathbf{P}_{n+1}-j \mathbb{D}_{n+2} \mathbf{P}_{n+1} \mathbb{D}^{\mathbf{P}_{n+3}}=} & \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
& -i\left(\mathbb{P}_{n+1}+i \mathbb{P}_{n+2}+j \mathbb{P}_{n+3}+k \mathbb{P}_{n+4}\right) \\
& -j\left(\mathbb{P}_{n+2}+i \mathbb{P}_{n+3}+j \mathbb{P}_{n+4}+k \mathbb{P}_{n+5}\right) \tag{2.20}\\
& -k\left(\mathbb{P}_{n+3}+i \mathbb{P}_{n+4}+j \mathbb{P}_{n+5}+k \mathbb{P}_{n+6}\right) \\
= & \mathbb{P}_{n} .
\end{align*}
$$

(2.15): By using (2.6) and (2.11)

$$
\begin{align*}
\mathbb{D}^{\mathbf{P}}{ }_{n} \mathbb{D}^{\mathbf{P}}{ }_{m}= & \mathbb{P}_{n} \mathbb{P}_{m}+i\left(\mathbb{P}_{n} \mathbb{P}_{m+1}+\mathbb{P}_{n+1} \mathbb{P}_{m}\right) \tag{2.21}\\
& +j\left(\mathbb{P}_{n} \mathbb{P}_{m+2}+\mathbb{P}_{n+2} \mathbb{P}_{m}\right)+k\left(\mathbb{P}_{n} \mathbb{P}_{m+3}+\mathbb{P}_{n+3} \mathbb{P}_{m}\right) . \\
\mathbb{D}^{\mathbf{P}}{ }_{n+1} \mathbb{D}^{\mathbf{P}}{ }_{m+1}= & \mathbb{P}_{n+1} \mathbb{P}_{m+1}+i\left(\mathbb{P}_{n+1} \mathbb{P}_{m+2}+\mathbb{P}_{n+2} \mathbb{P}_{m+1}\right) \\
& +j\left(\mathbb{P}_{n+1} \mathbb{P}_{m+3}+\mathbb{P}_{n+3} \mathbb{P}_{m+1}\right) \tag{2.22}\\
& +k\left(\mathbb{P}_{n+1} \mathbb{P}_{m+4}+\mathbb{P}_{n+4} \mathbb{P}_{m+1}\right) .
\end{align*}
$$

Finally, adding equations (2.21) and (2.22) side by side, we obtain

$$
\begin{align*}
\mathbb{D}^{\mathbf{P}}{ }_{n} \mathbb{D}_{m} \mathbf{P}_{m+1} \mathbb{D}^{\mathbf{P}}{ }_{n+1} \mathbb{D}_{m+1}= & \left(\mathbb{P}_{n} \mathbb{P}_{m}+\mathbb{P}_{n+1} \mathbb{P}_{m+1}\right) \\
& +i\left[\mathbb{P}_{n} \mathbb{P}_{m+1}+\mathbb{P}_{n+1} \mathbb{P}_{m}+\mathbb{P}_{n+1} \mathbb{P}_{m+2}+\mathbb{P}_{n+2} \mathbb{P}_{m+1}\right] \\
& +j\left[\mathbb{P}_{n} \mathbb{P}_{m+2}+\mathbb{P}_{n+2} \mathbb{P}_{m}+\mathbb{P}_{n+1} \mathbb{P}_{m+3}+\mathbb{P}_{n+3} \mathbb{P}_{m+1}\right] \\
& +k\left[\mathbb{P}_{n} \mathbb{P}_{m+3}+\mathbb{P}_{n+3} \mathbb{P}_{m}+\mathbb{P}_{n+1} \mathbb{P}_{m+4}+\mathbb{P}_{n+4} \mathbb{P}_{m+1}\right] \\
= & (2 p-2 q)\left[\mathbb{P}_{n+m+1}+2 i \mathbb{P}_{n+m+2}+2 j \mathbb{P}_{n+m+3}\right. \tag{2.23}\\
& \left.+2 k \mathbb{P}_{n+m+4}\right] \\
& -e\left[P_{n+m+1}+2 i P_{n+m+2}+2 j P_{n+m+3}+2 k P_{n+m+4}\right] \\
= & (2 p-2 q)\left[2 \mathbb{D}^{\mathbf{P}}{ }_{n+m+1}-\mathbb{P}_{n+m+1}\right] \\
& -e_{P}\left[2 D_{n+m+1}^{P}-P_{n+m+1}\right]
\end{align*}
$$

where D_{n+m+1}^{P} is the dual Pell quaternion [24].
Theorem 2.2. Let $\mathbb{D}^{\mathbf{P}}{ }_{n}, D_{n}^{P}$ and D_{n}^{q} be n-th terms of the generalized dual Pell quaternion sequence $\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)$, the dual Pell quaternion sequence $\left(D_{n}^{P}\right)$ and the dual Pell-Lucas quaternion sequence (D_{n}^{q}), respectively. The following relations are satisfied

$$
\begin{align*}
& \mathbb{D}^{\mathbf{P}}{ }_{n+1}+\mathbb{D}^{\mathbf{P}}{ }_{n-1}=p D_{n}^{q}+q D_{n-1}^{q}, \\
& \mathbb{D}^{\mathbf{P}}{ }_{n}+\mathbb{D}^{\mathbf{P}}{ }_{n+1}=\frac{p}{2} D_{n+1}^{q}+\frac{q}{2} D_{n}^{q}, \\
& \mathbb{D}^{\mathbf{P}}{ }_{n+1}-\mathbb{D}^{\mathbf{P}}{ }_{n}=\frac{p}{2} D_{n}^{q}+\frac{q}{2} D_{n-1}^{q}, \tag{2.24}\\
& \mathbb{D}^{\mathbf{P}}{ }_{n+1}-\mathbb{D}^{\mathbf{P}}{ }_{n-1}=2\left[p D_{n}^{P}+q D_{n-1}^{P}\right], \\
& \mathbb{D}^{\mathbf{P}}{ }_{n+2}-\mathbb{D}^{\mathbf{P}}{ }_{n-2}=2\left[p D_{n}^{q}+q D_{n-1}^{q}\right] .
\end{align*}
$$

Proof. From equations (2.16), (2.17) and identities between the generalized Pell number \mathbb{P}_{n} [23],

$$
\left\{\begin{array}{l}
\mathbb{P}_{n}=(p-2 q) P_{n}+q P_{n+1}=p P_{n}+q P_{n-1} \tag{2.25}\\
\mathbb{P}_{n}+\mathbb{P}_{n+1}=\frac{p}{2} q_{n+1}+\frac{q}{2} q_{n} \\
\mathbb{P}_{n+1}-\mathbb{P}_{n}=\frac{p}{2} q_{n}+\frac{q}{2} q_{n-1} \\
\mathbb{P}_{n+1}+\mathbb{P}_{n-1}=p q_{n}+q q_{n-1} \\
\mathbb{P}_{n+1}-\mathbb{P}_{n-1}=2\left(p P_{n}+q P_{n-1}\right), \\
\mathbb{P}_{n+2}-\mathbb{P}_{n-2}=2\left(p q_{n}+q q_{n-1}\right)
\end{array}\right.
$$

also, from the relations of between Pell and Pell-Lucas numbers as follows:

$$
\left\{\begin{array}{l}
P_{n+1}+P_{n-1}=q_{n}, \\
P_{n+1}-P_{n-1}=2 P_{n}, \\
P_{n}+P_{n+1}=\frac{1}{2} q_{n+1}, \\
P_{n+2}+P_{n-2}=6 P_{n}, \\
P_{n+2}-P_{n-2}=2 q_{n} .
\end{array}\right.
$$

it follows that

$$
\begin{align*}
\mathbb{D}^{\mathbf{P}_{n+1}}+\mathbb{D}^{\mathbf{P}_{n-1}}= & \left(\mathbb{P}_{n+1}+\mathbb{P}_{n-1}\right)+i\left(\mathbb{P}_{n+2}+\mathbb{P}_{n}\right)+j\left(\mathbb{P}_{n+3}+\mathbb{P}_{n+1}\right) \\
& +k\left(\mathbb{P}_{n+4}+\mathbb{P}_{n+2}\right) \\
= & {\left[p\left(P_{n+1}+P_{n-1}\right)+q\left(P_{n}+P_{n-2}\right)\right] } \\
& +i\left[p\left(P_{n+2}+P_{n}\right)+q\left(P_{n+1}+P_{n-1}\right)\right] \\
& +j\left[p\left(P_{n+3}+P_{n+1}\right)+q\left(P_{n+2}+P_{n}\right)\right] \tag{2.26}\\
& +k\left[p\left(P_{n+4}+P_{n+2}\right)+q\left(P_{n+3}+P_{n+1}\right)\right] \\
= & p\left(q_{n}+i q_{n+1}+j q_{n+2}+k q_{n+3}\right) \\
& +q\left(q_{n-1}+i q_{n}+j q_{n+1}+k q_{n+2}\right) \\
= & p D_{n}^{q}+q D_{n-1}^{q}, \\
\mathbb{D}_{n}+\mathbb{D}^{\mathbf{P}_{n+1}=} & \left(\mathbb{P}_{n}+\mathbb{P}_{n+1}\right)+i\left(\mathbb{P}_{n+1}+\mathbb{P}_{n+2}\right)+j\left(\mathbb{P}_{n+2}+\mathbb{P}_{n+3}\right) \\
& +k\left(\mathbb{P}_{n+3}+\mathbb{P}_{n+4}\right) \\
= & {\left[p\left(P_{n}+P_{n+1}\right)+q\left(P_{n-1}+P_{n}\right)\right] } \\
& +i\left[p\left(P_{n+1}+P_{n+2}\right)+q\left(P_{n}+P_{n+1}\right)\right] \\
& +j\left[p\left(P_{n+2}+P_{n+3}\right)+q\left(P_{n+1}+P_{n+2}\right)\right] \tag{2.27}\\
& +k\left[p\left(P_{n+3}+P_{n+4}\right)+q\left(P_{n+2}+P_{n+3}\right)\right] \\
= & \frac{p}{2}\left(q_{n+1}+i q_{n+2}+j q_{n+3}+k q_{n+4}\right) \\
& +\frac{q}{2}\left(q_{n}+i q_{n+1}+j q_{n+2}+k q_{n+3}\right) \\
= & \frac{p}{2} D_{n+1}^{q}+\frac{q}{2} D_{n}^{q},
\end{align*}
$$

$$
\begin{align*}
\mathbb{D}^{\mathbf{P}_{n+1}-\mathbb{D}^{\mathbf{P}_{n}}=} & \left(\mathbb{P}_{n+1}-\mathbb{P}_{n}\right)+i\left(\mathbb{P}_{n+2}-\mathbb{P}_{n+1}\right)+j\left(\mathbb{P}_{n+3}-\mathbb{P}_{n+2}\right) \\
& +k\left(\mathbb{P}_{n+4}-\mathbb{P}_{n+3}\right) \\
= & {\left[p\left(P_{n+1}-P_{n}\right)+q\left(P_{n}-P_{n-1}\right)\right] } \\
& +i\left[p\left(P_{n+2}-P_{n+1}\right)+q\left(P_{n+1}-P_{n}\right)\right] \\
& +j\left[p\left(P_{n+3}-P_{n+2}\right)+q\left(P_{n+2}-P_{n+1}\right)\right] \tag{2.28}\\
& +k\left[p\left(P_{n+4}-P_{n+3}\right)+q\left(P_{n+3}-P_{n+2}\right)\right] \\
= & \frac{p}{2}\left(q_{n}+i q_{n+1}+j q_{n+2}+k q_{n+3}\right) \\
& +\frac{q}{2}\left(q_{n-1}+i q_{n}+j q_{n+1}+k q_{n+2}\right) \\
= & \frac{p}{2} D_{n}^{q}+\frac{q}{2} D_{n-1}^{q}, \\
& \\
\mathbb{D}^{\mathbf{P}}{ }_{n+1}-\mathbb{D}^{\mathbf{P}}{ }_{n-1}= & \left(\mathbb{P}_{n+1}-\mathbb{P}_{n-1}\right)+i\left(\mathbb{P}_{n+2}-\mathbb{P}_{n}\right)+j\left(\mathbb{P}_{n+3}-\mathbb{P}_{n+1}\right) \\
& +k\left(\mathbb{P}_{n+4}-\mathbb{P}_{n+2}\right) \\
= & {\left[p\left(P_{n+1}-P_{n-1}\right)+q\left(P_{n}-P_{n-2}\right)\right] } \\
& +i\left[p\left(P_{n+2}-P_{n}\right)+q\left(P_{n+1}-P_{n-1}\right)\right] \tag{2.29}\\
& +j\left[p\left(P_{n+3}-P_{n+1}\right)+q\left(P_{n+2}-P_{n}\right)\right] \\
& +k\left[p\left(P_{n+4}-P_{n+2}\right)+q\left(P_{n+3}-P_{n+1}\right)\right] \\
= & 2 p\left(P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3}\right) \\
& +2 q\left(P_{n-1}+i P_{n}+j P_{n+1}+k P_{n+2}\right) \\
= & 2\left[p D_{n}^{P}+q D_{n-1}^{P}\right]
\end{align*}
$$

and

$$
\begin{align*}
\mathbb{D}^{\mathbf{P}_{n+2}-\mathbb{D}^{\mathbf{P}}}{ }_{n-2}= & \left(\mathbb{P}_{n+2}-\mathbb{P}_{n-2}\right)+i\left(\mathbb{P}_{n+3}-\mathbb{P}_{n-1}\right)+j\left(\mathbb{P}_{n+4}-\mathbb{P}_{n}\right) \\
& +k\left(\mathbb{P}_{n+5}-\mathbb{P}_{n+1}\right) \\
= & {\left[p\left(P_{n+2}-P_{n-2}\right)+q\left(P_{n+1}-P_{n-3}\right)\right] } \\
& +i\left[p\left(P_{n+3}-P_{n-1}\right)+q\left(P_{n+2}-P_{n-2}\right)\right] \\
& +j\left[p\left(P_{n+4}-P_{n}\right)+q\left(P_{n+3}-P_{n-1}\right)\right] \tag{2.30}\\
& +k\left[p\left(P_{n+5}-P_{n+1}\right)+q\left(P_{n+4}-P_{n}\right)\right] \\
= & 2 p\left(q_{n}+i q_{n+1}+j q_{n+2}+k q_{n+3}\right) \\
& +2 q\left(q_{n-1}+i q_{n}+j q_{n+1}+k q_{n+2}\right) \\
= & 2\left[p D_{n}^{q}+q D_{n-1}^{q}\right] .
\end{align*}
$$

Theorem 2.3. Let $\mathbb{D}^{\mathbf{P}}{ }_{n}$ be the $n-t h$ term of the generalized dual Pell quaternion sequence $\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)$. Then, we have the following relations between these quaternions:

$$
\begin{gather*}
\mathbb{D}_{n}^{\mathbf{P}_{n}}+\overline{\mathbb{D}_{n}}=2 \mathbb{P}_{n} \tag{2.31}\\
\mathbb{D}^{\mathbf{P}}{ }_{n} \overline{\mathbb{D}^{\mathbf{P}}}+\mathbb{D}^{\mathbf{P}}{ }_{n-1} \overline{\mathbb{D}^{\mathbf{P}}{ }_{n-1}}=\left(\mathbb{P}_{n}\right)^{2}+\left(\mathbb{P}_{n-1}\right)^{2}=(2 p-2 q) \mathbb{P}_{2 n-1}-e_{P} P_{2 n-1} \tag{2.32}\\
\mathbb{D}^{\mathbf{P}}{ }_{n} \overline{\mathbb{D}^{\mathbf{P}}}+\mathbb{D}_{n}+\mathbb{D}^{\mathbf{P}}{ }_{n+1} \overline{\mathbb{D}^{\mathbf{P}}{ }_{n+1}}=\left(\mathbb{P}_{n}\right)^{2}+\left(\mathbb{P}_{n+1}\right)^{2}=(2 p-2 q) \mathbb{P}_{2 n+1}-e_{P} P_{2 n+1} \tag{2.33}\\
\mathbb{D}^{\mathbf{P}}{ }_{n+1} \overline{\mathbb{D}_{n+1} \mathbf{P}_{n+1}}-\mathbb{D}^{\mathbf{P}}{ }_{n-1} \overline{\mathbb{D}^{\mathbf{P}}{ }_{n-1}}=\left(\mathbb{P}_{n+1}\right)^{2}-\left(\mathbb{P}_{n-1}\right)^{2}=2\left[(2 p-2 q) \mathbb{P}_{2 n}-e_{P} P_{2 n}\right] \tag{2.34}\\
\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)^{2}+\left(\mathbb{D}^{\mathbf{P}}{ }_{n-1}\right)^{2}=2 \mathbb{D}^{\mathbf{P}}{ }_{n} \mathbb{P}_{n}-\left(\mathbb{P}_{n}\right)^{2}+2 \mathbb{D}^{\mathbf{P}}{ }_{n-1} \mathbb{P}_{n-1}-\left(\mathbb{P}_{n-1}\right)^{2} \\
=(2 p-2 q)\left[2 \mathbb{D}^{\left.\mathbf{P}_{2 n-1}-\mathbb{P}_{2 n-1}\right]-e_{P}\left[2 D_{2 n-1}^{P}-P_{2 n-1}\right]}\right. \tag{2.35}
\end{gather*}
$$

where $D_{2 n-1}^{P}$ is the dual Pell quaternion [24].

Proof. (2.31): By using (2.9), we get

$$
\begin{aligned}
\mathbb{D}^{\mathbf{P}}{ }_{n}+\overline{\mathbb{D}_{n}}= & \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
& +\left(\mathbb{P}_{n}-i \mathbb{P}_{n+1}-j \mathbb{P}_{n+2}-k \mathbb{P}_{n+3}\right) \\
= & 2 \mathbb{P}_{n}+i\left(\mathbb{P}_{n+1}-\mathbb{P}_{n+1}\right)+j\left(\mathbb{P}_{n+2}-\mathbb{P}_{n+2}\right) \\
& +k\left(\mathbb{P}_{n+3}-\mathbb{P}_{n+3}\right) \\
= & 2 \mathbb{P}_{n} .
\end{aligned}
$$

(2.32): By using (2.9) and (2.10), we get

$$
\begin{aligned}
\mathbb{D}^{\mathbf{P}}{ }_{n} \overline{\mathbb{D}_{n}}+\mathbb{D}^{\mathbf{P}}{ }_{n-1} \overline{\mathbb{D}_{n-1}} & =\left(\mathbb{P}_{n}\right)^{2}+\left(\mathbb{P}_{n-1}\right)^{2} \\
& =(2 p-2 q) \mathbb{P}_{2 n-1}-e_{P} P_{2 n-1}
\end{aligned}
$$

(2.33): By using (2.9) and (2.10) and [23], we get

$$
\begin{aligned}
\mathbb{D}^{\mathbf{P}}{ }_{n} \overline{\mathbb{D P}_{n}}+\mathbb{D}^{\mathbf{P}}{ }_{n+1} \overline{\mathbb{D}_{n+1}} & =\left(\mathbb{P}_{n}\right)^{2}+\left(\mathbb{P}_{n+1}\right)^{2} \\
& =(2 p-2 q) \mathbb{P}_{2 n+1}-e_{P} P_{2 n+1}
\end{aligned}
$$

(2.34): By using (2.9) and (2.10) and [23], we get

$$
\begin{aligned}
\mathbb{D}^{\mathbf{P}}{ }_{n+1} \overline{\mathbb{D}^{\mathbf{P}}}{ }_{n+1} & \mathbb{D}^{\mathbf{P}}{ }_{n-1} \overline{\mathbb{D}^{\mathbf{P}}{ }_{n-1}}
\end{aligned}=\left(\mathbb{P}_{n+1}\right)^{2}-\left(\mathbb{P}_{n-1}\right)^{2} .
$$

(2.35): By using (2.10) and [23], we get

$$
\begin{aligned}
\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)^{2}+\left(\mathbb{D}^{\mathbf{P}}{ }_{n-1}\right)^{2} & =\left[2 \mathbb{D}^{\mathbf{P}}{ }_{n} \mathbb{P}_{n}-\left(\mathbb{P}_{n}\right)^{2}\right]+\left[2 \mathbb{D}^{\mathbf{P}}{ }_{n-1} \mathbb{P}_{n-1}-\left(\mathbb{P}_{n-1}\right)^{2}\right] \\
& =2 \mathbb{D}^{\mathbf{P}_{n}} \mathbb{P}_{n}+2 \mathbb{D}^{\mathbf{P}}{ }_{n-1} \mathbb{P}_{n-1}-\left(\mathbb{P}_{n}\right)^{2}+\left(\mathbb{P}_{n-1}\right)^{2} \\
& =(2 p-2 q)\left[2 \mathbb{D}^{\mathbf{P}}{ }_{2 n-1}-\mathbb{P}_{2 n-1}\right]-e_{P}\left[2 D_{2 n-1}^{P}-P_{2 n-1}\right] .
\end{aligned}
$$

where $D_{2 n-1}^{P}$ is the dual Pell quaternion [24].
Theorem 2.4. Let $\mathbb{D}^{\mathbf{P}}{ }_{n}$ be the $n-t h$ term of the generalized dual Pell quaternion sequence $\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)$. Then, we have the following identities

$$
\begin{gather*}
\sum_{s=1}^{n} \mathbb{D}^{\mathbf{P}}{ }_{s}=\frac{1}{4}\left[p D_{n+1}^{q}+q D_{n}^{q}\right]-\frac{p}{4} D_{1}^{q}-\frac{q}{4} D_{0}^{q}, \tag{2.36}\\
\sum_{s=0}^{p} \mathbb{D}^{\mathbf{P}}{ }_{n+s}=\frac{p}{4}\left[D_{n+p+1}^{q}-D_{n}^{q}\right]+\frac{q}{4}\left[D_{n+p}^{q}-D_{n-1}^{q}\right], \tag{2.37}\\
\sum_{s=1}^{n} \mathbb{D}^{\mathbf{P}}{ }_{2 s-1}=\frac{1}{2}\left[\mathbb{D}^{\mathbf{P}_{2 n}}-p D_{0}^{P}-q D_{-1}^{P}\right] . \tag{2.38}\\
\sum_{s=1}^{n} \mathbb{D}^{\mathbf{P}}{ }_{2 s}=\frac{1}{2}\left[\mathbb{D}^{\mathbf{P}}{ }_{2 n+1}-p D_{1}^{P}-q D_{0}^{P}\right] . \tag{2.39}
\end{gather*}
$$

where D_{n}^{P} and D_{n}^{q} are the dual Pell quaternion and the dual Pell-Lucas quaternion respectively [24].

Proof. (2.36): Using $\sum_{t=1}^{n} \mathbb{P}_{t}=\frac{1}{2}\left(\mathbb{P}_{n}+\mathbb{P}_{n+1}-\mathbb{P}_{0}-\mathbb{P}_{1}\right)$ [23], we get

$$
\begin{aligned}
\sum_{s=1}^{n} & \mathbb{D}_{s} \mathbf{P}_{s} \sum_{s=1}^{n} \mathbb{P}_{s}+i \sum_{s=1}^{n} \mathbb{P}_{s+1}+j \sum_{s=1}^{n} \mathbb{P}_{s+2}+k \sum_{s=1}^{n} \mathbb{P}_{s+3} \\
& =\frac{1}{2}\left[\left(\mathbb{P}_{n}+\mathbb{P}_{n+1}-p-q\right)+i\left(\mathbb{P}_{n+1}+\mathbb{P}_{n+2}-3 p-q\right)\right. \\
& \left.+j\left(\mathbb{P}_{n+2}+\mathbb{P}_{n+3}-7 p-3 q\right)+k\left(\mathbb{P}_{n+3}+\mathbb{P}_{n+4}-17 p-7 q\right)\right] \\
& =\frac{1}{2}\left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
& +\frac{1}{2}\left(\mathbb{P}_{n+1}+i \mathbb{P}_{n+2}+j \mathbb{P}_{n+3}+k \mathbb{P}_{n+4}\right) \\
& -\frac{p}{2}(1+3 i+7 j+17 k)-\frac{q}{2}(1+i+3 j+7 k) \\
& =\frac{1}{2}\left[\mathbb{D}^{\mathbf{P}}{ }_{n}+\mathbb{D}^{\mathbf{P}}{ }_{n+1}\right]-\frac{p}{4} D_{1}^{q}-\frac{q}{4} D_{0}^{q} \\
& =\frac{1}{4}\left[p D_{n+1}^{q}+q D_{n}^{q}\right]-\frac{p}{4} D_{1}^{q}-\frac{q}{4} D_{0}^{q} .
\end{aligned}
$$

(2.37): Hence, we can write

$$
\begin{aligned}
& \sum_{s=0}^{p} \mathbb{D}^{\mathbf{P}}{ }_{n+s}=\sum_{s=0}^{p} \mathbb{P}_{n+s}+i \sum_{s=0}^{p} \mathbb{P}_{n+s+1}+j \sum_{s=0}^{p} \mathbb{P}_{n+s+2}+k \sum_{s=0}^{p} \mathbb{P}_{n+s+3} \\
& \quad=\frac{1}{2}\left[\left(\mathbb{P}_{n+p}+\mathbb{P}_{n+p+1}-\mathbb{P}_{1}-\mathbb{P}_{0}\right)+i\left(\mathbb{P}_{n+p+1}-\mathbb{P}_{n+p+2}-\mathbb{P}_{2}-\mathbb{P}_{1}\right)\right. \\
& \left.\quad+j\left(\mathbb{P}_{n+p+2}+\mathbb{P}_{n+p+3}-\mathbb{P}_{3}-\mathbb{P}_{2}\right)+k\left(\mathbb{P}_{n+p+3}+\mathbb{P}_{n+p+4}-\mathbb{P}_{4}-\mathbb{P}_{3}\right)\right] \\
& \quad=\frac{1}{2}\left(\mathbb{P}_{n+p}+i \mathbb{P}_{n+p+1}+j \mathbb{P}_{n+p+2}+k \mathbb{P}_{n+p+3}\right) \\
& \quad+\frac{1}{2}\left(\mathbb{P}_{n+p+1}+i \mathbb{P}_{n+p+2}+j \mathbb{P}_{n+p+3}+k \mathbb{P}_{n+p+4}\right) \\
& \quad-\frac{p}{2}(1+3 i+7 j+17 k)-\frac{q}{2}(1+i+3 j+7 k) \\
& \quad=\frac{1}{2}\left[\mathbb{D}^{\mathbf{P}}{ }_{n+p}+\mathbb{D}^{\mathbf{P}}{ }_{n+p+1}\right]-\frac{p}{4} D_{n}^{q}-\frac{q}{4} D_{n-1}^{q} \\
& \quad=\frac{p}{4}\left[D_{n+p+1}^{q}-D_{n}^{q}\right]+\frac{q}{4}\left[D_{n+p}^{q}-D_{n-1}^{q}\right] .
\end{aligned}
$$

(2.38): Using $\sum_{i=1}^{n} \mathbb{P}_{2 i-1}=\frac{1}{2}\left(\mathbb{P}_{2 n}-q\right)$ and $\sum_{i=1}^{n} \mathbb{P}_{2 i}=\frac{1}{2}\left(\mathbb{P}_{2 n+1}-p\right) \quad$ [23], we get

$$
\begin{aligned}
\sum_{s=1}^{n} \mathbb{D}_{2 s-1}= & \frac{1}{2}\left[\left(\mathbb{P}_{2 n}-q\right)+i\left(\mathbb{P}_{2 n+1}-p\right)+j\left(\mathbb{P}_{2 n+2}-q-2 p\right)\right. \\
& \left.+k\left(\mathbb{P}_{2 n+3}-2 q-5 p\right)\right] \\
= & \frac{1}{2}\left[\mathbb{P}_{2 n}+i \mathbb{P}_{2 n+1}+j \mathbb{P}_{2 n+2}+k \mathbb{P}_{2 n+3}\right] \\
& \quad-\frac{1}{2}[q+i p+j(2 p+q)+k(5 p+2 q)] \\
= & \left.\frac{1}{2} \mathbb{D}^{\mathbf{P}_{2 n}}-p(0+i+2 j+5 k)-q(1+0 i+j+2 k)\right] \\
= & \frac{1}{2}\left[\mathbb{D}^{\mathbf{P}_{2 n}}-p D_{0}^{P}-q D_{-1}^{P}\right] .
\end{aligned}
$$

(2.39): Using $\sum_{i=1}^{n} \mathbb{P}_{2 i}=\frac{1}{2}\left(\mathbb{P}_{2 n+1}-p\right)$ [23], we obtain

$$
\begin{aligned}
\sum_{s=1}^{n} \mathbb{D}^{\mathbf{P}_{2 s}}= & \frac{1}{2}\left[\left(\mathbb{P}_{2 n+1}-p\right)+i\left(\mathbb{P}_{2 n+2}-2 p-q\right)\right. \\
& \left.+j\left(\mathbb{P}_{2 n+3}-5 p-2 q\right)+k\left(\mathbb{P}_{2 n+4}-12 p-5 q\right)\right] \\
= & \frac{1}{2}\left[\mathbb{P}_{2 n+1}+i \mathbb{P}_{2 n+2}+j \mathbb{P}_{2 n+3}+k \mathbb{P}_{2 n+4}\right] \\
& -\frac{p}{2}[1+2 i+5 j+12 k]-\frac{q}{2}[0+i+2 j+5 k] \\
= & \frac{1}{2}\left[\mathbb{D}^{\mathbf{P}^{2 n+1}},-p D_{1}^{P}-q D_{0}^{P}\right] .
\end{aligned}
$$

Theorem 2.5. Let $\mathbb{D}^{\mathbf{P}}{ }_{n}$ and D_{n}^{P} be the $n-t h$ terms of the generalized dual Pell quaternion sequence $\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)$ and the dual Pell quaternion sequence $\left(D_{n}^{P}\right)$, respectively. Then, we have

$$
\begin{gather*}
D_{n}^{P} \overline{\mathbb{D}_{n}{ }_{n}}-\overline{D_{n}^{P}} \mathbb{D}^{\mathbf{P}}{ }_{n}=2\left[\mathbb{P}_{n} D_{n}^{P}-P_{n} \mathbb{D}_{\mathbf{n}}^{\mathbf{P}}\right] \tag{2.40}\\
D_{n}^{P} \overline{\mathbb{D}_{n}}+\overline{D_{n}^{P}} \mathbb{D}^{\mathbf{P}}{ }_{n}=2 P_{n} \mathbb{P}_{n} \tag{2.41}\\
D_{n}^{P} \mathbb{D}^{\mathbf{P}}{ }_{n}-\overline{D_{n}^{P}} \overline{\bar{D}^{\mathbf{P}}}{ }_{n}=2\left[P_{n} \mathbb{D}^{\mathbf{P}}{ }_{n}+\mathbb{P}_{n} D_{n}^{P}-2 P_{n} \mathbb{P}_{n}\right] \tag{2.42}
\end{gather*}
$$

Proof. (2.40): By using (2.3) and (2.9), we get

$$
\begin{aligned}
D_{n}^{P} \overline{\mathbb{D}_{n}}-\overline{D_{n}^{P}} \mathbb{D}^{\mathbf{P}}{ }_{n}= & \left(P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3}\right) \\
& \left(\mathbb{P}_{n}-i \mathbb{P}_{n+1}-j \mathbb{P}_{n+2}-k \mathbb{P}_{n+3}\right) \\
& -\left(P_{n}-i P_{n+1}-j P_{n+2}-k P_{n+3}\right) \\
& \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
= & \left(P_{n} \mathbb{P}_{n}-P_{n} \mathbb{P}_{n}\right)+2 i\left(-P_{n} \mathbb{P}_{n+1}+P_{n+1} \mathbb{P}_{n}\right) \\
& +2 j\left(-P_{n} \mathbb{P}_{n+2}+P_{n+2} \mathbb{P}_{n}\right) \\
& +2 k\left(-P_{n} \mathbb{P}_{n+3}+P_{n+3} \mathbb{P}_{n}\right) \\
= & -2 P_{n}\left[\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right] \\
& +2 \mathbb{P}_{n}\left[P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3}\right] \\
= & 2\left[\mathbb{P}_{n} D_{n}^{P}-P_{n} \mathbb{D}_{n}\right] .
\end{aligned}
$$

(2.41): By using (2.3) and (2.9), we get

$$
\begin{aligned}
D_{n}^{P} \overline{\overline{D P}_{n}}+\overline{D_{n}^{P}} \mathbb{D}^{\mathbf{P}}= & \left(P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3}\right) \\
& \left(\mathbb{P}_{n}-i \mathbb{P}_{n+1}-j \mathbb{P}_{n+2}-k \mathbb{P}_{n+3}\right) \\
& +\left(P_{n}-i P_{n+1}-j P_{n+2}-k P_{n+3}\right) \\
& \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
= & \left(P_{n} \mathbb{P}_{n}+P_{n} \mathbb{P}_{n}\right) \\
& +i\left(-P_{n} \mathbb{P}_{n+1}+P_{n+1} \mathbb{P}_{n}+P_{n} \mathbb{P}_{n+1}-P_{n+1} \mathbb{P}_{n}\right) \\
& +j\left(-P_{n} \mathbb{P}_{n+2}+P_{n+2} \mathbb{P}_{n}+P_{n} \mathbb{P}_{n+2}-P_{n+2} \mathbb{P}_{n}\right) \\
& +k\left(-P_{n} \mathbb{P}_{n+3}+P_{n+3} \mathbb{P}_{n}+P_{n} \mathbb{P}_{n+3}-P_{n+3} \mathbb{P}_{n}\right) \\
= & 2 P_{n} \mathbb{P}_{n} .
\end{aligned}
$$

(2.42): By using (2.3) and (2.9), we get

$$
\begin{aligned}
D_{n}^{P} \mathbb{D}_{n}{ }_{n} \overline{D_{n}^{P}} \overline{\mathbb{D}_{n}}= & \left(P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3}\right) \\
& \left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
& -\left(P_{n}-i P_{n+1}-j P_{n+2}-k P_{n+3}\right) \\
& \left(\mathbb{P}_{n}-i \mathbb{P}_{n+1}-j \mathbb{P}_{n+2}-k \mathbb{P}_{n+3}\right) \\
= & \left(P_{n} \mathbb{P}_{n}-P_{n} \mathbb{P}_{n}\right)+i\left(2 P_{n} \mathbb{P}_{n+1}+2 P_{n+1} \mathbb{P}_{n}\right) \\
& +j\left(2 P_{n} \mathbb{P}_{n+2}+2 P_{n+2} \mathbb{P}_{n}\right) \\
& +k\left(2 P_{n} \mathbb{P}_{n+3}+2 P_{n+3} \mathbb{P}_{n}\right) \\
= & 2 P_{n}\left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right) \\
& +2 \mathbb{P}_{n}\left(P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3}\right) \\
& -4 \mathbb{P}_{n} P_{n} \\
= & 2\left[P_{n} \mathbb{D}_{\mathbf{n}}^{\mathbf{P}}+\mathbb{P}_{n} D_{n}^{P}-2 P_{n} \mathbb{P}_{n}\right] .
\end{aligned}
$$

Theorem 2.6 (Binet's Formulas). Let $\mathbb{D}^{\mathbf{P}}{ }_{n}$ and $\mathbb{D}^{\mathbf{q}}{ }_{n}$ be $n-t h$ terms of the generalized dual Pell quaternion sequence $\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)$ and the generalized dual Pell-Lucas quaternion sequence $\left(\mathbb{D}^{\mathbf{q}}{ }_{n}\right)$ respectively. For $n \geq 1$, the Binet's formulas for these quaternions are as follows:

$$
\begin{equation*}
\mathbb{D}^{\mathbf{P}}{ }_{n}=\frac{1}{\alpha-\beta}\left(\hat{\alpha} \alpha^{n}-\hat{\beta} \beta^{n}\right) \tag{2.43}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{D}^{\mathbf{q}}{ }_{n}=\left(\bar{\alpha} \alpha^{n}+\bar{\beta} \beta^{n}\right) \tag{2.44}
\end{equation*}
$$

respectively, where

$$
\begin{aligned}
\hat{\alpha}= & (p-q \beta)+i[p(2-\beta)+q]+j[p(5-2 \beta)+q(2-\beta)] \\
& +k[p(12-5 \beta)+q(5-2 \beta)], \quad \alpha=1+\sqrt{2}, \\
\hat{\beta}= & (q \alpha-p)+i[p(\alpha-2)-q]+j[p(2 \alpha-5)+q(\alpha-2)] \\
& +k[(p(5 \alpha-12)+q(2 \alpha-5)], \quad \beta=1-\sqrt{2} .
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\alpha}= & {[p(2-2 \beta)+q(2+2 \beta)]+i[p(6-2 \beta)+q(2-2 \beta)] } & \\
& +j[p(14-6 \beta)+q(6-2 \beta)]+k[p(34-14 \beta)+q(14-6 \beta)], & \alpha=1+\sqrt{2} \\
\bar{\beta}= & {[p(2 \alpha-2)-q(2 \alpha+2)]+i[p(2 \alpha-6)+q(2 \alpha-2)] } & \\
& +j[p(6 \alpha-14)+q(2 \alpha-6)]+k[(p(14 \alpha-34)+q(6 \alpha-14)], & \beta=1-\sqrt{2} .
\end{aligned}
$$

respectively.
Proof. The Binet's formulas for Pell sequence, generalized Pell sequence and dual Pell quaternion sequence respectively, are as follows
$P_{n}=\frac{1}{2 \sqrt{2}}\left(\alpha^{n}-\beta^{n}\right), \mathbb{P}_{n}=\frac{1}{2 \sqrt{2}}\left(l \alpha^{n}-m \beta^{n}\right)$ and $D_{n}^{P}=\frac{1}{2 \sqrt{2}}\left(\underline{\alpha} \alpha^{n}-\underline{\beta} \beta^{n}\right)$

Using the recurrence relations for generalized dual Pell number and generalized dual Pell quaternion $\mathbb{D}^{\mathbf{P}}{ }_{n}$ respectively, $\mathbb{P}_{n+2}=2 \mathbb{P}_{n+1}+\mathbb{P}_{n}, \mathbb{D}^{\mathbf{P}}{ }_{n+2}=2 \mathbb{D}^{\mathbf{P}}{ }_{n+1}+\mathbb{D}^{\mathbf{P}}{ }_{n}$, we can write the characteristic equation as follows:

$$
t^{2}-2 t-1=0
$$

The roots of this equation are

$$
\alpha=1+\sqrt{2} \text { and } \beta=1-\sqrt{2},
$$

where $\alpha+\beta=2, \alpha-\beta=2 \sqrt{2}, \alpha \beta=-1$.
Using recurrence relation and initial values $\mathbb{D}^{\mathbf{p}}{ }_{0}=(q, p, 2 p+q, 5 p+2 q)$, $\mathbb{D}^{\mathbf{p}}{ }_{1}=(p, 2 p+q, 5 p+2 q, 12 p+5 q)$, the Binet's formula for $\mathbb{D}_{\mathbf{n}}^{\mathbf{p}}$ is

$$
\mathbb{D}^{\mathbf{p}_{n}}=A \alpha^{n}+B \beta^{n}=\frac{1}{2 \sqrt{2}}\left[\hat{\alpha} \alpha^{n}-\hat{\beta} \beta^{n}\right],
$$

where $A=\frac{\mathbb{D}_{1}^{\mathrm{P}}-\mathbb{D}_{0}^{\mathrm{P}} \beta}{\alpha-\beta}, B=\frac{\alpha \mathbb{D}_{0}^{\mathrm{P}}-\mathbb{D}_{1}^{\mathrm{P}}}{\alpha-\beta}$ and

$$
\begin{gathered}
\hat{\alpha}=(p-q \beta)+i[p(2-\beta)+q]+j[p(5-2 \beta)+q(2-\beta)]+k[(12-5 \beta)+q(5-2 \beta)], \\
\hat{\beta}=(q \alpha-p)+i[p(\alpha-2)-q]+j[p(2 \alpha-5)+q(\alpha-2)]+k[p(5 \alpha-12)+q(2 \alpha-5)] .
\end{gathered}
$$

Similarly, using recurrence relation $\mathbb{D}^{\mathbf{q}}{ }_{n+2}=2 \mathbb{D}^{\mathbf{q}}{ }_{n+1}+\mathbb{D}^{\mathbf{q}}{ }_{n}$, the Binet's formula for generalized Pell-Lucas quaternion $\mathbb{D}^{\mathbf{q}}{ }_{n}$ is obtained as follows:

$$
\begin{equation*}
\mathbb{D}^{\mathbf{q}}{ }_{n}=\left(\bar{\alpha} \alpha^{n}+\bar{\beta} \beta^{n}\right) \tag{2.45}
\end{equation*}
$$

where initial values

$$
\begin{gathered}
\mathbb{D}^{\mathbf{q}}{ }_{0}=(2 p-2 q, 2 p+2 q, 6 p+2 q, 14 p+6 q), \\
\mathbb{D}^{\mathbf{q}}{ }_{1}=(2 p+2 q, 6 p+2 q, 14 p+6 q, 34 p+14 q) .
\end{gathered}
$$

Theorem 2.7 (Cassini-like Identity). Let $\mathbb{D}^{\mathbf{P}}{ }_{n}$ and $\mathbb{D}^{\mathbf{q}}{ }_{n}$ be $n-t h$ terms of the generalized dual Pell sequence $\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)$ and the generalized dual Pell-Lucas sequence $\left(\mathbb{D}^{\mathbf{p}}{ }_{n}\right)$ respectively. For $n \geq 1$, the Cassini-like identity for $\mathbb{D}^{\mathbf{P}}{ }_{n}$ and $\mathbb{D}^{\mathbf{p}}{ }_{n}$ are as follows:

$$
\begin{equation*}
\mathbb{D}^{\mathbf{P}}{ }_{n-1} \mathbb{D}^{\mathbf{P}}{ }_{n+1}-\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)^{2}=(-1)^{n} e_{P}(1+2 i+6 j+14 k) \tag{2.46}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{D}^{\mathbf{q}}{ }_{n-1} \mathbb{D}^{\mathbf{q}}{ }_{n+1}-\left(\mathbb{D}^{\mathbf{q}}{ }_{n}\right)^{2}=8(-1)^{n+1} e_{q}(1+2 i+6 j+14 k) \tag{2.47}
\end{equation*}
$$

where

$$
e_{P}=e_{q}=p^{2}-2 p q-q^{2} .
$$

Proof. (2.46): By using (2.16) and (2.17) we get

$$
\begin{aligned}
\mathbb{D}^{\mathbf{P}_{n-1}} \mathbb{D}^{\mathbf{P}_{n+1}-\left(\mathbb{D}^{\mathbf{P}}{ }_{n}\right)^{2}=} & \left(\mathbb{P}_{n-1}+i \mathbb{P}_{n}+j \mathbb{P}_{n+1}+k \mathbb{P}_{n+2}\right) \\
& \left(\mathbb{P}_{n+1}+i \mathbb{P}_{n+2}+j \mathbb{P}_{n+3}+k \mathbb{P}_{n+4}\right) \\
& -\left(\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3}\right)^{2} \\
= & {\left[\mathbb{P}_{n-1} \mathbb{P}_{n+1}-\left(\mathbb{P}_{n}\right)^{2}\right] } \\
& +i\left[\mathbb{P}_{n-1} \mathbb{P}_{n+2}+\mathbb{P}_{n} \mathbb{P}_{n+1}-2 \mathbb{P}_{n} \mathbb{P}_{n+1}\right] \\
& +j\left[\mathbb{P}_{n-1} \mathbb{P}_{n+3}-2 \mathbb{P}_{n} \mathbb{P}_{n+2}+\left(\mathbb{P}_{n+1}\right)^{2}\right] \\
& +k\left[\mathbb{P}_{n-1} \mathbb{P}_{n+4}+\mathbb{P}_{n+1} \mathbb{P}_{n+2}-2 \mathbb{P}_{n} \mathbb{P}_{n+3}\right] \\
= & (-1)^{n} e_{P}(1+2 i+6 j+14 k) .
\end{aligned}
$$

where we use identity of the Pell number $P_{m} P_{n+1}-P_{m+1} P_{n}=(-1)^{n} P_{m-n}$ and identities of the generalized Pell numbers as follows:

$$
\begin{gather*}
\mathbb{P}_{n+1} \mathbb{P}_{n-1}-\left(\mathbb{P}_{n}\right)^{2}=(-1)^{n} e_{P}, \tag{2.48}\\
\mathbb{P}_{n+2} \mathbb{P}_{n-1}-\mathbb{P}_{n} \mathbb{P}_{n+1}=2(-1)^{n} e_{P}, \tag{2.49}\\
\mathbb{P}_{n+3} \mathbb{P}_{n-1}+\mathbb{P}_{n+1} \mathbb{P}_{n+1}-2 \mathbb{P}_{n} \mathbb{P}_{n+2}=6(-1)^{n} e_{P}, \tag{2.50}\\
\mathbb{P}_{n+4} \mathbb{P}_{n-1}+\mathbb{P}_{n+2} \mathbb{P}_{n+1}-2 \mathbb{P}_{n} \mathbb{P}_{n+3}=14(-1)^{n} e_{P}, \tag{2.51}\\
e_{P}=p^{2}-2 p q-q^{2} .
\end{gather*}
$$

Let the generalized Pell-Lucas sequence $\left(\mathfrak{q}_{n}\right)$ be defined as follows:

$$
\left\{\begin{array}{l}
\mathfrak{q}_{0}=2 p-2 q, \mathfrak{q}_{1}=2 p+2 q, \mathfrak{q}_{2}=6 p+2 q, p q \in \mathbb{Z} \tag{2.52}\\
\mathfrak{q}_{n}=2 \mathfrak{q}_{n-1}+\mathfrak{q}_{n-2}, n \geq 2 \\
\quad \text { or } \\
\mathfrak{q}_{n}=(p-2 q) q_{n}+q q_{n+1}=p q_{n}+q q_{n-1} .
\end{array}\right.
$$

Here, \mathfrak{q}_{n} is the n -th generalized Pell-Lucas number that defined as follows:

$$
\begin{equation*}
\left(\mathfrak{q}_{n}\right): 2 p-2 q, 2 p+2 q, 6 p+2 q, 14 p+6 q, 34 p+14 q,, \ldots, p q_{n}+q q_{n-1}, \ldots \tag{2.53}
\end{equation*}
$$

and let the generalized dual Pell-Lucas quaternion be defined as follows:

$$
\begin{equation*}
\left\{\mathbb{D}^{\mathbf{q}}{ }_{n}=\mathfrak{q}_{n}+i \mathfrak{q}_{n+1}+j \mathfrak{q}_{n+2}+k \mathfrak{q}_{n+3} \mid \mathfrak{q}_{n}, n \text {-th gen. Pell-Lucas number }\right\} \tag{2.54}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=i j k=0, \quad i j=-j i=j k=-k j=k i=-i k=0 .
$$

(2.47): By using (2.53) and (2.54) we get

$$
\begin{aligned}
\mathbb{D}^{\mathbf{q}}{ }_{n-1} \mathbb{D}^{\mathbf{q}}{ }_{n+1}-\left(\mathbb{D}^{\mathbf{q}}{ }_{n}\right)^{2}= & \left(\mathfrak{q}_{n-1}+i \mathfrak{q}_{n}+j \mathfrak{q}_{n+1}+k \mathfrak{q}_{n+2}\right) \\
& \left(\mathfrak{q}_{n+1}+i \mathfrak{q}_{n+2}+j \mathfrak{q}_{n+3}+k \mathfrak{q}_{n+4}\right) \\
& -\left(\mathfrak{q}_{n}+i \mathfrak{q}_{n+1}+j \mathfrak{q}_{n+2}+k \mathfrak{q}_{n+3}\right)^{2} \\
= & {\left[\mathfrak{q}_{n-1} \mathfrak{q}_{n+1}-\left(\mathfrak{q}_{n}\right)^{2}\right] } \\
& +i\left[\mathfrak{q}_{n-1} \mathfrak{q}_{n+2}+\mathfrak{q}_{n} \mathfrak{q}_{n+1}-2 \mathfrak{q}_{n} \mathfrak{q}_{n+1}\right] \\
& +j\left[\mathfrak{q}_{n-1} \mathfrak{q}_{n+3}-2 \mathfrak{q}_{n} \mathfrak{q}_{n+2}+\left(\mathfrak{q}_{n+1}\right)^{2}\right] \\
& +k\left[\mathfrak{q}_{n-1} \mathfrak{q}_{n+4}+\mathfrak{q}_{n+1} \mathfrak{q}_{n+2}-2 \mathfrak{q}_{n} \mathfrak{q}_{n+3}\right] \\
= & 8(-1)^{n+1} e_{q}(1+2 i+6 j+14 k) .
\end{aligned}
$$

where we use identity of the Pell-Lucas number $q_{n-1} q_{n+1}-q_{n} q_{n}=8(-1)^{n+1}$ and identities of the generalized Pell-Lucas numbers as follows:

$$
\begin{gather*}
\mathfrak{q}_{n+1} \mathfrak{q}_{n-1}-\left(\mathfrak{q}_{n}\right)^{2}=8(-1)^{n+1} e_{q}, \tag{2.55}\\
\mathfrak{q}_{n+2} \mathfrak{q}_{n-1}-\mathfrak{q}_{n} \mathfrak{q}_{n+1}=16(-1)^{n+1} e_{q}, \tag{2.56}
\end{gather*}
$$

$$
\begin{gather*}
\mathfrak{q}_{n+3} \mathfrak{q}_{n-1}+\mathfrak{q}_{n+1} \mathfrak{q}_{n+1}-2 \mathfrak{q}_{n} \mathfrak{q}_{n+2}=48(-1)^{n+1} e_{q}, \tag{2.57}\\
\mathfrak{q}_{n+4} \mathfrak{q}_{n-1}+\mathfrak{q}_{n+2} \mathfrak{q}_{n+1}-2 \mathfrak{q}_{n} \mathfrak{q}_{n+3}=112(-1)^{n+1} e_{q}, \tag{2.58}\\
e_{q}=p^{2}-2 p q-q^{2} .
\end{gather*}
$$

Special Case: From the equations (2.46) and (2.47) for $p=1, q=0$ and $e_{P}=e_{q}=1$, we obtain all results in [24] as a special case as follows:

$$
\begin{equation*}
D_{n-1}^{P} D_{n+1}^{P}-\left(D_{n}^{P}\right)^{2}=(-1)^{n}(1+2 i+6 j+14 k) \tag{2.59}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{n-1}^{q} D_{n+1}^{q}-\left(D_{n}^{q}\right)^{2}=8(-1)^{n+1}(1+2 i+6 j+14 k) . \tag{2.60}
\end{equation*}
$$

We will give an example in which we check in a particular case the Cassini-like identity for the generalized dual Pell quaternions.

Example 1. Let $\mathbb{D}^{\mathbf{P}}{ }_{1}, \mathbb{D}^{\mathbf{P}}, \mathbb{D}^{\mathbf{P}}{ }_{3}$ and $\mathbb{D}^{\mathbf{P}}{ }_{4}$ be the generalized dual Pell quaternions such that

$$
\left\{\begin{array}{l}
\mathbb{D}^{\mathbf{P}}=p+i(2 p+q)+j(5 p+2 q)+k(12 p+5 q) \\
\mathbb{D}^{\mathbf{P}}{ }_{2}=(2 p+q)+i(5 p+2 q)+j(12 p+5 q)+k(29 p+12 q) \\
\mathbb{D}^{\mathbf{P}_{3}}=(5 p+2 q)+i(12 p+5 q)+j(29 p+12 q)+k(70 p+29 q) \\
\mathbb{D}^{\mathbf{P}_{4}}=(12 p+5 q)+i(29 p+12 q)+j(70 p+29 q)+k(169 p+70 q)
\end{array}\right.
$$

In this case,

$$
\begin{aligned}
\mathbb{D}_{1} \mathbb{D}^{\mathbf{p}_{3}}-\left(\mathbb{D}^{\mathbf{p}}\right)^{2}= & {[p+i(2 p+q)+j(5 p+2 q)+k(12 p+5 q)] } \\
& {[(5 p+2 q)+i(12 p+5 q)+j(29 p+12 q)+k(70 p+29 q)] } \\
& -[(2 p+q)+i(5 p+2 q)+j(12 p+5 q)+k(29 p+12 q)]^{2} \\
= & \left(p^{2}-2 p q-q^{2}\right)+i\left(2 p^{2}-4 p q-2 q^{2}\right) \\
& +j\left(6 p^{2}-12 p q-6 q^{2}\right)+k\left(14 p^{2}-28 p q-14 q^{2}\right) \\
= & \left(p^{2}-2 p q-q^{2}\right)(1+2 i+6 j+14 k) \\
= & (-1)^{2} e_{P}(1+2 i+6 j+14 k)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{D}^{\mathbf{P}_{2} \mathbb{D}^{\mathbf{P}}}{ }_{4}-\left(\mathbb{D}_{3} \mathbf{P}_{3}\right)^{2}= & {[(2 p+q)+i(5 p+2 q)+j(12 p+5 q)+k(29 p+12 q)] } \\
& {[(12 p+5 q)+i(29 p+12 q)+j(70 p+29 q)+k(169 p+70 q)] } \\
& -[(5 p+2 q)+i(12 p+5 q)+j(29 p+12 q)+k(70 p+29 q)]^{2} \\
= & \left(-p^{2}+2 p q+q^{2}\right)+i\left(-2 p^{2}+4 p q+2 q^{2}\right) \\
& +j\left(-6 p^{2}+12 p q+6 q^{2}\right)+k\left(-14 p^{2}+28 p q+14 q^{2}\right) \\
= & -\left(p^{2}-2 p q-q^{2}\right)(1+2 i+6 j+14 k) \\
= & (-1)^{3} e_{P}(1+2 i+6 j+14 k) .
\end{aligned}
$$

Example 2. Let $\mathbb{D}^{\mathbf{q}}{ }_{1}, \mathbb{D}^{\mathbf{q}}{ }_{2}, \mathbb{D}^{\mathbf{q}}{ }_{3}$ and $\mathbb{D}^{\mathbf{q}}{ }_{4}$ be the generalized dual Pell-Lucas quaternions such that

$$
\left\{\begin{array}{l}
\mathbb{D}^{\mathbf{q}_{1}}=(2 p+2 q)+i(6 p+2 q)+j(14 p+6 q)+k(34 p+14 q) \\
\mathbb{D}^{\mathbf{q}_{2}}=(6 p+2 q)+i(14 p+6 q)+j(34 p+14 q)+k(82 p+34 q) \\
\mathbb{D}^{\mathbf{q}_{3}}=(14 p+6 q)+i(34 p+14 q)+j(82 p+34 q)+k(198 p+82 q) \\
\mathbb{D}^{\mathbf{q}_{4}}=(34 p+14 q)+i(82 p+34 q)+j(198 p+82 q)+k(478 p+198 q)
\end{array}\right.
$$

In this case,

$$
\begin{aligned}
\mathbb{D}^{\mathbf{q}}{ }_{1} \mathbb{D}^{\mathbf{q}_{3}}-\left(\mathbb{D}^{\left.\mathbf{\mathbf { q } _ { 2 }}\right)^{2}=}\right. & {[(2 p+2 q)+i(6 p+2 q)+j(14 p+6 q)+k(34 p+14 q)] } \\
& {[(14 p+6 q)+i(34 p+14 q)+j(82 p+34 q)} \\
& +k(198 p+82 q)] \\
& -[(6 p+2 q)+i(14 p+6 q)+j(34 p+14 q) \\
& +k(82 p+34 q)]^{2} \\
= & -\left(8 p^{2}-16 p q-8 q^{2}\right)-i\left(16 p^{2}-32 p q-16 q^{2}\right) \\
& -j\left(48 p^{2}-160 p q-48 q^{2}\right)-k\left(112 p^{2}-224 p q-112 q^{2}\right) \\
= & -8\left(p^{2}-2 p q-q^{2}\right)(1+2 i+6 j+14 k) \\
= & 8(-1)^{3} e_{q}(1+2 i+6 j+14 k)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{D}_{2} \mathbb{D}^{\mathbf{q}}{ }_{4}-\left(\mathbb{D}^{\mathbf{q}_{3}}\right)^{2}= & {[(6 p+2 q)+i(14 p+6 q)+j(34 p+14 q)+k(82 p+34 q)] } \\
& {[(34 p+14 q)+i(82 p+34 q)+j(198 p+82 q)} \\
& +k(478 p+198 q)] \\
& -[(14 p+6 q)+i(34 p+14 q)+j(82 p+34 q) \\
& +k(198 p+82 q)]^{2} \\
= & 8\left(p^{2}-2 p q-q^{2}\right)+16 i\left(p^{2}-2 p q-q^{2}\right) \\
& +48 j\left(p^{2}-2 p q-q^{2}\right)+112 k\left(p^{2}-2 p q-q^{2}\right) \\
= & 8\left(p^{2}-2 p q-q^{2}\right)(1+2 i+6 j+14 k) \\
= & 8(-1)^{4} e_{q}(1+2 i+6 j+14 k) .
\end{aligned}
$$

3 Conclusion

The generalized dual Pell quaternions is given by

$$
\begin{equation*}
\mathbb{D}^{\mathbf{P}}{ }_{n}=\mathbb{P}_{n}+i \mathbb{P}_{n+1}+j \mathbb{P}_{n+2}+k \mathbb{P}_{n+3} \tag{3.1}
\end{equation*}
$$

where \mathbb{P}_{n} is the n-th generalized Pell number and i, j, k are quaternionic units which satisfy the equalities

$$
i^{2}=j^{2}=k^{2}=0, \quad i j=-j i=j k=-k j=k i=-i k=0 .
$$

The generalized dual Pell-Lucas quaternions is given by

$$
\begin{equation*}
\mathbb{D}^{\mathbf{q}}{ }_{n}=\mathfrak{q}_{n}+i \mathfrak{q}_{n+1}+j \mathfrak{q}_{n+2}+k \mathfrak{q}_{n+3}, \tag{3.2}
\end{equation*}
$$

where \mathfrak{q}_{n} is the n-th generalized Pell-Lucas number and i, j, k are quaternionic units which satisfy the equalities

$$
i^{2}=j^{2}=k^{2}=0, \quad i j=-j i=j k=-k j=k i=-i k=0 .
$$

Also, from the generalized dual Pell quaternions and the generalized dual Pell-Lucas quaternions for $p=1, q=0$, we obtain results of the dual Pell quaternions and the dual Pell-Lucas quaternions given by Torunbalcı Aydın and Yüce [24] as a special case.

References

[1] Hamilton, W. R. (1866) Elements of Quaternions. Longmans, Green and Co., London.
[2] Clifford, W. K. (1873) Preliminary Sketch of Bi-quaternions. Proc. London Math. Soc., 4, 381-395.
[3] Horadam, A. F. (1961) A Generalized Fibonacci Sequence. The American Mathematical Monthly. 68 (5), 455-459.
[4] Horadam, A. F. (1963) Complex Fibonacci Numbers and Fibonacci Quaternions. American Math. Monthly. 70 (3), 289-291.
[5] Iyer, M. R. (1969) A Note on Fibonacci Quaternions., The Fibonacci Quaterly. 7 (3), 225229.
[6] Iyer, M. R. (1969) Some Results on Fibonacci Quaternions. The Fibonacci Quarterly. 7, 201-210.
[7] Verner, E. \& Hoggatt, Jr.(1969) Fibonacci and Lucas Numbers. The Fibonacci Association.
[8] Swamy, M. N. (1973) On Generalized Fibonacci Quaternions. The Fibonacci Quarterly, 11(5), 547-550.
[9] Iakin, A. L. (1977) Generalized Quaternions of Higher Order. The Fibonacci Quarterly. 15 (4), 343-346.
[10] Iakin, A. L.(1977) Generalized Quaternions with Quaternion Components. The Fibonacci Quarterly. 15, 350-352.
[11] Harman, C. J. (1981) Complex Fibonacci Numbers. The Fibonacci Quarterly. 19 (1), 82-86.
[12] Horadam, A. F. (1993) Quaternion Recurrence Relations. Ulam Quarterly. 2 (2), 23-33.
[13] Kula L., Yaylı Y. (2007) Split Quaternions and Rotations in Semi-Euclidean Space. J. Korean Math. Soc., 44 (6), 1313-1327.
[14] Ata, E., \& Yaylı, Y. (2009) Dual quaternions and dual projective spaces. Chaos Solitons Fractals, 40(3), 1255-1263.
[15] Halıc1, S. (2012) On Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 22(2), 321-327.
[16] Halıc1, S. (2013) On Complex Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 23, 105-112.
[17] Akyiğit, M., Kösal, H. H., \& Tosun, M. (2013) Split Fibonacci Quaternions. Adv. Appl.Clifford Algebras., 23(3), 535-545.
[18] Majernik, V. (2006) Quaternion formulation of the Galilean space-time transformation. Acta Phy. Slovaca., 56 (1), 9-14.
[19] Ercan, Z. \& Yüce, S. (2011) On properties of the dual quaternions. Eur. J. Pure Appl. Math., 4(2), 142-146.
[20] Nurkan, K. S., \& Güven, İ. A. (2015) Dual Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 25(2), 403-414.
[21] Yüce, S., \& Torunbalcı Aydın, F. (2016) A New Aspect of Dual Fibonacci Quaternions. Adv. Appl. Clifford Algebras., 26(2), 873-884.
[22] Yüce, S., Torunbalcı, Aydın, F. (2016) Generalized Dual Fibonacci Quaternions. Applied Mathematics E-Notes, 16, 276-289.
[23] Torunbalcı, Aydın F., Köklü, K. On Generalizations of the Pell Sequence. (submitted 2017) Available online: arXiv:1711.06260[math.CO].
[24] Torunbalcı Aydın, F. \& Yüce, S. (2016) Dual Pell Quaternions. Journal of Ultra Scientist of Physical Sciences, 28(7), 328-339.
[25] Çimen, C. B., \& İpek, A. (2016) On Pell Quaternions and Pell-Lucas Quaternions. $A d v$. Appl. Clifford Algebras. 26, 39-51.
[26] Szynal-Liana, A., \& Wloch, I. (2016) The Pell Quaternions and the Pell Octanions. Adv. Appl. Clifford Algebras. 26, 435-440.
[27] Horadam A. F. (1971) Pell Identities. The Fibonacci Quarterly, 9 (3), 245-263.
[28] Horadam A. F. \& Bro. J. M. Mahon. (1985) Pell and Pell-Lucas Polynomials. The Fibonacci Quarterly, 23 (1), 17-20.

