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1 Introduction

The real quaternions are a number system which extends to the complex numbers. They are first
described by Irish mathematician William Rowan Hamilton in 1843.

Hamilton [1] introduced the set of real quaternions which can be represented as

H = { q = q0 + i q1 + j q2 + k q3 | q0, q1, q2, q3 ∈ R } (1.1)

where

i2 = j2 = k2 = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j .
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Several authors worked on different quaternions and their generalizations. ([2–22, 24–26]).
In 2013, Akyiğit et al. [17] defined split Fibonacci and split Lucas quaternions and obtained some
identities for them. Complex split quaternions were defined by Kula and Yayli [13] in 2007.

In 1961, Horadam [3] firstly introduced the generalized Fibonacci sequence (Hn) and used
this sequence in 1963, Horadam [4] defined the n-th Fibonacci quaternion which can be repre-
sented as

QF = {Qn = Fn + i Fn+1 + j Fn+2 + k Fn+3 | Fn, n− thFibonacci number } (1.2)

where
i2 =j2 = k2 = i j k = −1 , i j = −j i = k , j k = −k j = i ,

k i = −i k = j

and n ≥ 1.
In 1969, Iyer [5, 6] derived many relations for the Fibonacci quaternions.
In 1973, Swamy [8] considered generalized Fibonacci quaternions as a new quaternion as

follows:
Pn = Hn + iHn+1 + j Hn+2 + k Hn+3 (1.3)

where 
Hn = Hn−1 + Hn−2,

H1 = p,

H2 = p+ q,

Hn = (p− q)Fn + qFn+1, n ≥ 1

where Hn is the n− th generalized Fibonacci number that is defined in [4].
(See [8] for generalized Fibonacci quaternions).
In 1977, Iakin [9, 10] introduced higher order quaternions and gave some identities for these

quaternions.
In 1993, Horadam [12] extend to quaternions to the complex Fibonacci numbers defined by

Harman [11].
In 2006, Majernik [18] defined dual quaternions as follows:

HD =

{
Q = a+ b i + c j + d k | a, b, c, d ∈ R, i2 = j2 = k2 = i j k = 0,

i j = −j i = j k = −k j = k i = −i k = 0

}
. (1.4)

In 2009, Ata and Yaylı [14] defined dual quaternions with dual numbers coefficient ( a +

ε b , a, b ∈ R , ε2 = 0 , ε 6= 0 ) as follows:

H(D) =
{
Q = A+Bi + Cj +Dk | A, B, C, D ∈ D , i2 = j2 = k2 = −1 = ijk

}
(1.5)

In 2014, Nurkan and Güven [20] defined dual Fibonacci quaternions as follows:

H(D) = {Q̃n =F̃n + iF̃n+1 + jF̃n+2 + kF̃n+3 | F̃n = Fn + εFn+1, ε
2 = 0, ε 6= 0}, (1.6)

where

i2 = j2 = k2 = i j k = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j
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n ≥ 1 and Q̃n = Qn + εQn+1. Essentially, these quaternions in equations (1.5) and (1.6) must
be called dual coefficient quaternion and dual coefficient Fibonacci quaternions, respectively. For
more details on dual quaternions, see [19]. It is clear that H(D) and HD are different sets.

In 2016, Yüce and Torunbalcı Aydın [21] defined dual Fibonacci quaternions as follows:

HD = {Qn = Fn + i Fn+1 + j Fn+2 + k Fn+3 | Fn, n-th Fibonacci number}, (1.7)

where
i2 = j2 = k2 = i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0.

In 2016, Yüce and Torunbalcı Aydın [22] defined generalized dual Fibonacci quaternions as
follows:

QD = {Dn =Hn + iHn+1 + j Hn+2 + k Hn+3 | Hn, n-th

Generalized Fibonacci number}
(1.8)

where
i2 = j2 = k2 = i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0.

In 1971, Horadam studied on the Pell and Pell–Lucas sequences and he gave Cassini-like
formula as follows [27]:

Pn+1Pn−1 − P 2
n = (−1)n, (1.9)

and Pell identities 

PrPn+1 + Pr−1Pn = Pn+r,

Pn(Pn+1 + Pn−1) = P2n,

P2n+1 + P2n = 2P 2
n+1 − 2P 2

n − (−1)n,
P 2
n + P 2

n+1 = P2n+1,

P 2
n + P 2

n+3 = 5(P 2
n+1 + P 2

n+2),

Pn+aPn+b − PnPn+a+b = (−1)nPnPn+a+b,
P−n = (−1)n+1Pn.

(1.10)

In 1985, Horadam and Mohan [28] obtained Cassini-like formula as follows:

qn+1 qn−1 − q2n = 8 (−1)n+1. (1.11)

First the idea to consider Pell quaternions it was suggested by Horadam in paper [12].
In 2017 (arXiv), Torunbalcı Aydın and Köklü [23] defined generalized Pell sequence as fol-

lows: 
P0 = q, P1 = p, P2 = 2p+ q, p q ∈ Z
Pn = 2Pn−1 + Pn−2, n ≥ 2

or

Pn = (p− 2q)Pn + q Pn+1 = pPn + q Pn−1

(1.12)

where Pn is the n-th generalized Pell number that defined in [23] as follows:

(Pn) : q , p , 2 p+ q , 5 p+ 2 q , 12 p+ 5 q , 29 p+ 12 q , . . . , p Pn + qPn−1, . . . (1.13)
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In 2016, Torunbalcı Aydın and Yüce [24] defined dual Pell quaternions and dual Pell–Lucas
quaternions as follows respectively:

PD = {DP
n =Pn + i Pn+1 + j Pn+2 + k Pn+3 | Pn n-thPell number}, (1.14)

where
i2 = j2 = k2 = i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0

and

pD = {Dp
n =qn + i qn+1 + j qn+2 + k qn+3 | qn n-thPell–Lucas number}, (1.15)

i2 = j2 = k2 = i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0 .

Here, the Pell–Lucas sequence (qn) and qn which is the n-th term of the dual Pell–Lucas
quaternion sequence (Dq

n) are defined by the following recurrence relations:

(qn) : 2 , 2 , 6 , 14, 34, 82, 198, 478, 1154, 2786, . . . , qn, . . .{
qn = 2qn−1 + qn−2, n ≥ 3,

q0 = 2, q1 = 2, q2 = 6.
(1.16)

In 2016, Çimen and İpek [25] worked on Pell quaternions and Pell–Lucas quaternions and
defined as follows respectively:

QP n = {QP n = Pn e0 + Pn+1 e1 + Pn+2 e2 + Pn+3 e3|Pn, n-thPell number} (1.17)

and
QPLn ={QPLn = qn e0 + qn+1 e1 + qn+2 e2 + qn+3 e3| qn, n-th

Pell–Lucas number}
(1.18)

where 
e20 = 1, e21 = e22 = e23 = −1,
e0 e1 = e1 e0 = e1, e0 e2 = e2 e0 = e2, e0 e3 = e3 e0 = e3,

e1 e2 = −e2 e1 = e3, e2 e3 = −e3 e2 = e1, e3 e1 = −e1 e3 = e2.

In 2016, Anetta and Iwona [26] worked on the Pell quaternions and the Pell octanions.
In this paper, we define the generalized dual Pell quaternions as follows:

PD = {DP
n = Pn + iPn+1 + j Pn+2 + k Pn+3 |Pn, n-thGen.Pell number} (1.19)

where

i2 = j2 = k2 =i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0.

Furthermore, we give Binet’s Formula and Cassini-like identities for the generalized dual Pell
quaternions.
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2 Generalized dual Pell quaternions

The generalized Pell sequence Pn is defined as
P0 = q, P1 = p, P2 = 2p+ q, p, q ∈ Z
Pn = 2Pn−1 + Pn−2, n ≥ 2

or

Pn = (p− 2q)Pn + q Pn+1 = pPn + q Pn−1.

(2.1)

Here, Pn is the n-th Pell number and Pn is the n-th generalized Pell number that defined in [23]
as follows:

(Pn) : q , p , 2 p+ q , 5 p+ 2 q , 12 p+ 5 q , 29 p+ 12 q , . . . , p Pn + qPn−1, . . .

We can define the generalized dual Pell quaternions by using generalized Pell numbers as follows

QD = {DP
n = Pn + iPn+1 + j Pn+2 + k Pn+3 | Pn, n-th Gen. Pell number}, (2.2)

where
i2 = j2 = k2 = i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0.

The scaler and the vector part of DP
n which is the n-th term of the generalized dual Pell quaternion

(DP
n) are denoted by

SDP
n
= Pn and VDP

n
= iPn+1 + jPn+2 + kPn+3. (2.3)

Thus, the generalized dual Pell quaternion DP
n is given by DP

n = SDP
n
+ VDP

n
. Let DP1

n and
DP2

n be n-th terms of the generalized dual Pell quaternion sequences (DP1
n) and (DP2

n) such
that

DP1
n = Pn + iPn+1 + j Pn+2 + k Pn+3 (2.4)

and
DP2

n = Kn + iKn+1 + j Kn+2 + kKn+3. (2.5)

Then, the addition and subtraction of the generalized dual Pell quaternions is defined by

DP1
n ± DP2

n = (Pn + iPn+1 + j Pn+2 + k Pn+3)

±(Kn + iKn+1 + jKn+2 + kKn+3)

= (Pn ±Kn) + i (Pn+1 ±Kn+1) + j (Pn+2 ±Kn+2)

+k (Pn+3 ±Kn+3) .

(2.6)

Multiplication of the generalized dual Pell quaternions is defined by

DP1
n .DP2

n = (Pn + iPn+1 + j Pn+2 + k Pn+3)

(Kn + iKn+1 + jKn+2 + kKn+3)

= (PnKn) + Pn(iKn+1 + jKn+2 + kKn+3)

+(iPn+1 + j Pn+2 + k Pn+3)Kn.

(2.7)
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or
DP1

n .DP2
n = SDP1n

SDP2n
+ SDP1n

VDP2n
+ SDP2n

VDP1n
. (2.8)

The conjugate of generalized dual Pell quaternion DP
n is denoted by DP

n and it is

DP
n = Pn − iPn+1 − j Pn+2 − k Pn+3. (2.9)

The norm of DP
n is defined as

‖DP
n‖2 = DP

n DP
n = (Pn)2. (2.10)

Then, we give the following theorem using statements (2.1), (2.2) and the generalized Pell number
in [23] as follows

Pm Pn+1 + Pm−1 Pn = (2p− 2q)Pm+n − eP Pm+n (2.11)

where
eP = p2 − 2p q − q2.

Theorem 2.1. Let Pn and DP
n be the n − th terms of generalized Pell sequence (Pn) and the

generalized dual Pell quaternion sequence (DP
n), respectively. In this case, for n ≥ 1 we can

give the following relations:
DP

n + 2DP
n+1 = DP

n+2 (2.12)

(DP
n)

2 = 2PnDP
n − (Pn)2 (2.13)

DP
n − iDP

n+1 − j DP
n+2 − kDP

n+3 = Pn (2.14)

DP
nDP

m + DP
n+1DP

m+1 =(2p− 2q) [2DP
n+m+1 − Pn+m+1]

− eP [2DP
n+m+1 − Pn+m+1].

(2.15)

where DP
n+m+1 is the dual Pell quaternion [24].

Proof. (2.12): By the equations

DP
n = Pn + iPn+1 + j Pn+2 + k Pn+3 (2.16)

and
DP

n+1 = Pn+1 + iPn+2 + j Pn+3 + k Pn+4 (2.17)

we get,

DP
n + 2DP

n+1 = (Pn + iPn+1 + j Pn+2 + k Pn+3)

+2(Pn+1 + iPn+2 + j Pn+3 + k Pn+4 )

= (Pn + 2Pn+1) + i (Pn+1 + 2Pn+2) + j (Pn+2 + 2Pn+3)

+k (Pn+3 + 2Pn+4)

= Pn+2 + iPn+3 + j Pn+4 + k Pn+5

= DP
n+2 .

(2.18)

71



(2.13):
(DP

n)
2 = (Pn + iPn+1 + j Pn+2 + k Pn+3)

(Pn + iPn+1 + j Pn+2 + k Pn+3 )

= (Pn)2 + 2i (Pn Pn+1) + 2j (Pn Pn+2) + 2k (Pn Pn+3)

= 2PnDP
n − (Pn)2.

(2.19)

(2.14): By using (2.3) and conditions in the equation (2.2), we get

DP
n − iDP

n+1 − j DP
n+2 − kDP

n+3 = (Pn + iPn+1 + j Pn+2 + k Pn+3)

−i (Pn+1 + iPn+2 + j Pn+3 + k Pn+4 )

−j (Pn+2 + i Pn+3 + j Pn+4 + k Pn+5)

−k(Pn+3 + i Pn+4 + j Pn+5 + k Pn+6)

= Pn .

(2.20)

(2.15): By using (2.6) and (2.11)

DP
nDP

m = Pn Pm + i (Pn Pm+1 + Pn+1 Pm)
+j (Pn Pm+2 + Pn+2 Pm) + k (Pn Pm+3 + Pn+3 Pm).

(2.21)

DP
n+1DP

m+1 = Pn+1 Pm+1 + i (Pn+1 Pm+2 + Pn+2 Pm+1)

+j (Pn+1 Pm+3 + Pn+3 Pm+1)

+k (Pn+1 Pm+4 + Pn+4 Pm+1).

(2.22)

Finally, adding equations (2.21) and (2.22) side by side, we obtain

DP
nDP

m + DP
n+1DP

m+1 = (Pn Pm + Pn+1 Pm+1)

+i [PnPm+1 + Pn+1Pm + Pn+1Pm+2 + Pn+2Pm+1]

+j [PnPm+2 + Pn+2Pm + Pn+1Pm+3 + Pn+3Pm+1]

+k [PnPm+3 + Pn+3Pm + Pn+1Pm+4 + Pn+4Pm+1]

= (2p− 2q)[Pn+m+1 + 2iPn+m+2 + 2j Pn+m+3

+2k Pn+m+4]

−e [Pn+m+1 + 2iPn+m+2 + 2jPn+m+3 + 2kPn+m+4]

= (2p− 2q)[ 2DP
n+m+1 − Pn+m+1]

−eP [ 2DP
n+m+1 − Pn+m+1]

(2.23)

where DP
n+m+1 is the dual Pell quaternion [24].

Theorem 2.2. Let DP
n, DP

n and Dq
n be n-th terms of the generalized dual Pell quaternion se-

quence (DP
n) , the dual Pell quaternion sequence (DP

n ) and the dual Pell–Lucas quaternion
sequence (Dq

n), respectively. The following relations are satisfied

DP
n+1 + DP

n−1 = pDq
n + q Dq

n−1 ,

DP
n + DP

n+1 =
p

2
Dq
n+1 +

q

2
Dq
n ,

DP
n+1 − DP

n =
p

2
Dq
n +

q

2
Dq
n−1 ,

DP
n+1 − DP

n−1 = 2 [ pDP
n + q DP

n−1] ,

DP
n+2 − DP

n−2 = 2 [ pDq
n + q Dq

n−1] .

(2.24)
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Proof. From equations (2.16), (2.17) and identities between the generalized Pell number Pn [23],

Pn = (p− 2q)Pn + q Pn+1 = pPn + q Pn−1,

Pn + Pn+1 =
p
2
qn+1 +

q
2
qn,

Pn+1 − Pn = p
2
qn +

q
2
qn−1,

Pn+1 + Pn−1 = p qn + q qn−1,

Pn+1 − Pn−1 = 2 (pPn + q Pn−1),

Pn+2 − Pn−2 = 2 (p qn + q qn−1).

(2.25)

also, from the relations of between Pell and Pell–Lucas numbers as follows:

Pn+1 + Pn−1 = qn,

Pn+1 − Pn−1 = 2Pn,

Pn + Pn+1 =
1
2
qn+1,

Pn+2 + Pn−2 = 6Pn,

Pn+2 − Pn−2 = 2 qn.

it follows that

DP
n+1 + DP

n−1 = (Pn+1 + Pn−1) + i (Pn+2 + Pn) + j (Pn+3 + Pn+1)

+k (Pn+4 + Pn+2)

= [p (Pn+1 + Pn−1) + q (Pn + Pn−2)]

+i [p (Pn+2 + Pn) + q (Pn+1 + Pn−1)]

+j [p (Pn+3 + Pn+1) + q (Pn+2 + Pn)]

+k [p (Pn+4 + Pn+2) + q (Pn+3 + Pn+1)]

= p (qn + i qn+1 + j qn+2 + k qn+3)

+q (qn−1 + i qn + j qn+1 + k qn+2)

= pDq
n + q Dq

n−1 ,

(2.26)

DP
n + DP

n+1 = (Pn + Pn+1) + i (Pn+1 + Pn+2) + j (Pn+2 + Pn+3)

+k (Pn+3 + Pn+4)

= [p (Pn + Pn+1) + q (Pn−1 + Pn)]

+i [p (Pn+1 + Pn+2) + q (Pn + Pn+1)]

+j [p (Pn+2 + Pn+3) + q (Pn+1 + Pn+2)]

+k [p (Pn+3 + Pn+4) + q (Pn+2 + Pn+3)]

= p
2 (qn+1 + i qn+2 + j qn+3 + k qn+4)

+ q
2 (qn + i qn+1 + j qn+2 + k qn+3)

= p
2 D

q
n+1 + q

2 D
q
n ,

(2.27)
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DP
n+1 − DP

n = (Pn+1 − Pn) + i (Pn+2 − Pn+1) + j (Pn+3 − Pn+2)

+k (Pn+4 − Pn+3)

= [p (Pn+1 − Pn) + q (Pn − Pn−1)]

+i [p (Pn+2 − Pn+1) + q (Pn+1 − Pn)]

+j [p (Pn+3 − Pn+2) + q (Pn+2 − Pn+1)]

+k [p (Pn+4 − Pn+3) + q (Pn+3 − Pn+2)]

= p
2 (qn + i qn+1 + j qn+2 + k qn+3)

+ q
2 (qn−1 + i qn + j qn+1 + k qn+2)

= p
2 D

q
n + q

2 D
q
n−1 ,

(2.28)

DP
n+1 − DP

n−1 = (Pn+1 − Pn−1) + i (Pn+2 − Pn) + j (Pn+3 − Pn+1)

+k (Pn+4 − Pn+2)

= [p (Pn+1 − Pn−1) + q (Pn − Pn−2)]

+i [p (Pn+2 − Pn) + q (Pn+1 − Pn−1)]

+j [p (Pn+3 − Pn+1) + q (Pn+2 − Pn)]

+k [p (Pn+4 − Pn+2) + q (Pn+3 − Pn+1)]

= 2 p (Pn + i Pn+1 + j Pn+2 + k Pn+3)

+2 q (Pn−1 + i Pn + j Pn+1 + k Pn+2)

= 2 [pDP
n + q DP

n−1] ,

(2.29)

and

DP
n+2 − DP

n−2 = (Pn+2 − Pn−2) + i (Pn+3 − Pn−1) + j (Pn+4 − Pn)
+k (Pn+5 − Pn+1)

= [p (Pn+2 − Pn−2) + q (Pn+1 − Pn−3)]

+i [p (Pn+3 − Pn−1) + q (Pn+2 − Pn−2)]

+j [p (Pn+4 − Pn) + q (Pn+3 − Pn−1)]

+k [p (Pn+5 − Pn+1) + q (Pn+4 − Pn)]

= 2 p (qn + i qn+1 + j qn+2 + k qn+3)

+2 q (qn−1 + i qn + j qn+1 + k qn+2)

= 2 [pDq
n + q Dq

n−1] .

(2.30)

Theorem 2.3. Let DP
n be the n − th term of the generalized dual Pell quaternion sequence

(DP
n). Then, we have the following relations between these quaternions:

DP
n + DP

n = 2Pn (2.31)

DP
nDP

n + DP
n−1DP

n−1 = (Pn)2 + (Pn−1)
2 = (2p− 2q)P2n−1 − eP P2n−1 (2.32)

DP
nDP

n + DP
n+1DP

n+1 = (Pn)2 + (Pn+1)
2 = (2p− 2q)P2n+1 − eP P2n+1 (2.33)

DP
n+1DP

n+1 − DP
n−1DP

n−1 = (Pn+1)
2 − (Pn−1)

2 = 2 [(2p− 2q)P2n − eP P2n ] (2.34)

(DP
n)

2 + (DP
n−1)

2 = 2DP
n Pn − (Pn)2 + 2DP

n−1 Pn−1 − (Pn−1)
2

= (2p− 2q) [ 2DP
2n−1 − P2n−1]− eP [ 2DP

2n−1 − P2n−1 ]
(2.35)

where DP
2n−1 is the dual Pell quaternion [24].
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Proof. (2.31): By using (2.9), we get

DP
n + DP

n = (Pn + iPn+1 + j Pn+2 + k Pn+3)

+(Pn − iPn+1 − j Pn+2 − k Pn+3 )

= 2Pn + i (Pn+1 − Pn+1) + j (Pn+2 − Pn+2)

+k (Pn+3 − Pn+3)

= 2Pn .

(2.32): By using (2.9) and (2.10), we get

DP
nDP

n + DP
n−1DP

n−1 = (Pn)2 + (Pn−1)
2

= (2p− 2q)P2n−1 − eP P2n−1

(2.33): By using (2.9) and (2.10) and [23], we get

DP
nDP

n + DP
n+1DP

n+1 = (Pn)2 + (Pn+1)
2

= (2p− 2q)P2n+1 − eP P2n+1

(2.34): By using (2.9) and (2.10) and [23], we get

DP
n+1DP

n+1 − DP
n−1DP

n−1 = (Pn+1)
2 − (Pn−1)

2

= (4p− 4q)P2n − 2 eP P2n

(2.35): By using (2.10) and [23], we get

(DP
n)

2 + (DP
n−1)

2 = [2DP
n Pn − (Pn)2] + [2DP

n−1 Pn−1 − (Pn−1)
2]

= 2DP
n Pn + 2DP

n−1 Pn−1 − (Pn)2 + (Pn−1)
2

= (2p− 2q) [ 2DP
2n−1 − P2n−1]− eP [2DP

2n−1 − P2n−1].

where DP
2n−1 is the dual Pell quaternion [24].

Theorem 2.4. Let DP
n be the n − th term of the generalized dual Pell quaternion sequence

(DP
n). Then, we have the following identities

n∑
s=1

DP
s =

1

4
[pDq

n+1 + q Dq
n]−

p

4
Dq

1 −
q

4
Dq

0, (2.36)

p∑
s=0

DP
n+s =

p

4
[Dq

n+p+1 −Dq
n] +

q

4
[Dq

n+p −D
q
n−1], (2.37)

n∑
s=1

DP
2s−1 =

1

2
[DP

2n − pDP
0 − q DP

−1]., (2.38)

n∑
s=1

DP
2s =

1

2
[DP

2n+1 − pDP
1 − q DP

0 ]. (2.39)

where DP
n and Dq

n are the dual Pell quaternion and the dual Pell–Lucas quaternion respec-
tively [24].
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Proof. (2.36): Using
n∑
t=1

Pt = 1
2
(Pn + Pn+1 − P0 − P1) [23], we get

n∑
s=1

DP
s =

n∑
s=1

Ps + i

n∑
s=1

Ps+1 + j

n∑
s=1

Ps+2 + k

n∑
s=1

Ps+3

=
1

2
[(Pn + Pn+1 − p− q) + i (Pn+1 + Pn+2 − 3 p− q)

+ j (Pn+2 + Pn+3 − 7p− 3q) + k (Pn+3 + Pn+4 − 17p− 7q)]

=
1

2
(Pn + iPn+1 + j Pn+2 + k Pn+3)

+
1

2
(Pn+1 + iPn+2 + j Pn+3 + k Pn+4)

− p

2
(1 + 3i+ 7j + 17k)− q

2
(1 + i+ 3j + 7k)

=
1

2
[DP

n + DP
n+1]−

p

4
Dq

1 −
q

4
Dq

0

=
1

4
[pDq

n+1 + q Dq
n]−

p

4
Dq

1 −
q

4
Dq

0 .

(2.37): Hence, we can write

p∑
s=0

DP
n+s =

p∑
s=0

Pn+s + i
p∑
s=0

Pn+s+1 + j
p∑
s=0

Pn+s+2 + k
p∑
s=0

Pn+s+3

= 1
2
[(Pn+p + Pn+p+1 − P1 − P0) + i (Pn+p+1 − Pn+p+2 − P2 − P1)

+j (Pn+p+2 + Pn+p+3 − P3 − P2) + k (Pn+p+3 + Pn+p+4 − P4 − P3)]

= 1
2
(Pn+p + iPn+p+1 + j Pn+p+2 + k Pn+p+3)

+1
2
(Pn+p+1 + iPn+p+2 + j Pn+p+3 + k Pn+p+4)

−p
2
(1 + 3i+ 7j + 17k)− q

2
(1 + i+ 3j + 7k)

= 1
2
[DP

n+p + DP
n+p+1]− p

4
Dq
n −

q
4
Dq
n−1

= p
4
[Dq

n+p+1 −Dq
n] +

q
4
[Dq

n+p − Dq
n−1] .

(2.38): Using
n∑
i=1

P2i−1 =
1
2
(P2n − q) and

n∑
i=1

P2i =
1
2
(P2n+1 − p) [23], we get

n∑
s=1

DP
2s−1 =

1
2
[(P2n − q) + i (P2n+1 − p) + j (P2n+2 − q − 2p)

+k (P2n+3 − 2q − 5p)]

= 1
2
[P2n + iP2n+1 + j P2n+2 + k P2n+3]

−1
2
[q + ip+ j(2p+ q) + k(5p+ 2q)]

= 1
2
DP

2n − p (0 + i+ 2j + 5k)− q (1 + 0i+ j + 2k)]

= 1
2
[DP

2n − pDP
0 − q DP

−1] .
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(2.39): Using
n∑
i=1

P2i =
1
2
(P2n+1 − p) [23], we obtain

n∑
s=1

DP
2s =

1
2
[(P2n+1 − p) + i (P2n+2 − 2p− q)

+j (P2n+3 − 5p− 2q) + k (P2n+4 − 12p− 5q)]

= 1
2
[P2n+1 + iP2n+2 + j P2n+3 + k P2n+4]

−p
2
[ 1 + 2i + 5j + 12k ]− q

2
[ 0 + i + 2j + 5k ]

= 1
2
[DP

2n+1 − pDP
1 − q DP

0 ] .

Theorem 2.5. Let DP
n and DP

n be the n − th terms of the generalized dual Pell quaternion
sequence (DP

n) and the dual Pell quaternion sequence (DP
n ), respectively. Then, we have

DP
n DP

n −DP
n DP

n = 2 [PnDP
n − PnDP

n ] (2.40)

DP
n DP

n +DP
n DP

n = 2Pn Pn (2.41)

DP
n DP

n −DP
n DP

n = 2 [PnDP
n + PnDP

n − 2Pn Pn] (2.42)

Proof. (2.40): By using (2.3) and (2.9), we get

DP
n DP

n −DP
n DP

n = (Pn + i Pn+1 + j Pn+2 + k Pn+3)

(Pn − iPn+1 − j Pn+2 − k Pn+3)

−(Pn − i Pn+1 − j Pn+2 − k Pn+3)

(Pn + iPn+1 + j Pn+2 + k Pn+3)

= (PnPn − PnPn) + 2i (−PnPn+1 + Pn+1Pn)
+2j (−PnPn+2 + Pn+2Pn)
+2k (−PnPn+3 + Pn+3Pn)

= −2Pn[Pn + iPn+1 + j Pn+2 + k Pn+3]

+2Pn[Pn + i Pn+1 + j Pn+2 + k Pn+3]

= 2 [PnDP
n − PnDP

n].

(2.41): By using (2.3) and (2.9), we get

DP
n DP

n +DP
n DP

n = (Pn + i Pn+1 + j Pn+2 + k Pn+3)

(Pn − iPn+1 − j Pn+2 − k Pn+3)

+(Pn − i Pn+1 − j Pn+2 − k Pn+3)

(Pn + iPn+1 + j Pn+2 + k Pn+3)

= (PnPn + PnPn)
+i (−PnPn+1 + Pn+1Pn + PnPn+1 − Pn+1Pn)
+j (−PnPn+2 + Pn+2Pn + PnPn+2 − Pn+2Pn)
+k (−PnPn+3 + Pn+3Pn + PnPn+3 − Pn+3Pn)

= 2PnPn.
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(2.42): By using (2.3) and (2.9), we get

DP
n DP

n −DP
n DP

n = (Pn + i Pn+1 + j Pn+2 + k Pn+3)

(Pn + iPn+1 + j Pn+2 + k Pn+3)

−(Pn − i Pn+1 − j Pn+2 − k Pn+3)

(Pn − iPn+1 − j Pn+2 − k Pn+3)

= (PnPn − PnPn) + i (2PnPn+1 + 2Pn+1Pn)
+j (2PnPn+2 + 2Pn+2Pn)
+k (2PnPn+3 + 2Pn+3Pn)

= 2Pn(Pn + iPn+1 + j Pn+2 + k Pn+3)

+2Pn(Pn + i Pn+1 + j Pn+2 + k Pn+3)

−4Pn Pn
= 2 [PnDP

n + PnDP
n − 2PnPn].

Theorem 2.6 (Binet’s Formulas). Let DP
n and Dq

n be n − th terms of the generalized dual
Pell quaternion sequence (DP

n) and the generalized dual Pell–Lucas quaternion sequence (Dq
n)

respectively. For n ≥ 1, the Binet’s formulas for these quaternions are as follows:

DP
n =

1

α− β

(
α̂ αn − β̂ βn

)
(2.43)

and
Dq

n = (α αn + β βn) (2.44)

respectively, where

α̂ = (p− qβ) + i [p (2− β) + q] + j [p (5− 2β) + q(2− β)]
+k [p (12− 5β) + q (5− 2β)], α = 1 +

√
2,

β̂ = (qα− p) + i [p (α− 2)− q] + j [p (2α− 5) + q(α− 2)]

+k [(p (5α− 12) + q (2α− 5)], β = 1−
√
2.

and

α = [p (2− 2β) + q(2 + 2β)] + i [p (6− 2β) + q (2− 2β)]

+j [p (14− 6β) + q(6− 2β)] + k [p (34− 14β) + q (14− 6β)], α = 1 +
√
2,

β = [p (2α− 2)− q (2α + 2)] + i [p (2α− 6) + q (2α− 2)]

+j [p (6α− 14) + q(2α− 6)] + k [(p (14α− 34) + q (6α− 14)], β = 1−
√
2.

respectively.

Proof. The Binet’s formulas for Pell sequence, generalized Pell sequence and dual Pell quater-
nion sequence respectively, are as follows

Pn =
1

2
√
2
(αn − βn) ,Pn =

1

2
√
2
( l αn − mβn) and DP

n =
1

2
√
2

(
ααn − ββn

)
[3],[23],[24].
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Using the recurrence relations for generalized dual Pell number and generalized dual Pell
quaternion DP

n respectively, Pn+2 = 2Pn+1 + Pn, DP
n+2 = 2DP

n+1 + DP
n, we can write the

characteristic equation as follows:
t2 − 2t− 1 = 0.

The roots of this equation are

α = 1 +
√
2 and β = 1−

√
2,

where α + β = 2 , α− β = 2
√
2 , αβ = −1.

Using recurrence relation and initial values Dp
0 = (q, p, 2p+ q, 5p+ 2q),

Dp
1 = (p, 2p+ q, 5p+ 2q, 12p+ 5q), the Binet’s formula for Dp

n is

Dp
n = A αn +B βn =

1

2
√
2

[
α̂ αn − β̂ βn

]
,

where A =
Dp
1−Dp

0 β

α−β , B =
αDp

0−Dp
1

α−β and

α̂ = (p− qβ) + i [p (2− β) + q] + j [p (5− 2β) + q(2− β)] + k [(12− 5β) + q (5− 2β)],

β̂ = (qα− p) + i [p (α− 2)− q] + j [p (2α− 5) + q (α− 2)] + k [p (5α− 12) + q (2α− 5)].

Similarly, using recurrence relation Dq
n+2 = 2Dq

n+1 + Dq
n , the Binet’s formula for gener-

alized Pell–Lucas quaternion Dq
n is obtained as follows:

Dq
n = (α αn + β βn) (2.45)

where initial values
Dq

0 = (2p− 2q, 2p+ 2q, 6p+ 2q, 14p+ 6q),

Dq
1 = (2p+ 2q, 6p+ 2q, 14p+ 6q, 34p+ 14q).

Theorem 2.7 (Cassini-like Identity). Let DP
n and Dq

n be n − th terms of the generalized
dual Pell sequence (DP

n) and the generalized dual Pell–Lucas sequence (Dp
n) respectively. For

n ≥ 1, the Cassini-like identity for DP
n and Dp

n are as follows:

DP
n−1DP

n+1 − (DP
n)

2 = (−1)n eP (1 + 2i+ 6j + 14k) (2.46)

and
Dq

n−1Dq
n+1 − (Dq

n)
2 = 8(−1)n+1 eq (1 + 2i+ 6j + 14k) (2.47)

where
eP = eq = p2 − 2 p q − q2.

Proof. (2.46): By using (2.16) and (2.17) we get

DP
n−1DP

n+1 − (DP
n)

2 = (Pn−1 + iPn + j Pn+1 + k Pn+2)

(Pn+1 + iPn+2 + j Pn+3 + k Pn+4)

−(Pn + iPn+1 + j Pn+2 + k Pn+3 )
2

= [Pn−1Pn+1 − (Pn)2]
+i [Pn−1Pn+2 + PnPn+1 − 2PnPn+1]

+j [Pn−1Pn+3 − 2PnPn+2 + (Pn+1)
2]

+k [Pn−1Pn+4 + Pn+1Pn+2 − 2PnPn+3]

= (−1)n eP (1 + 2i+ 6j + 14k).
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where we use identity of the Pell number PmPn+1 − Pm+1Pn = (−1)nPm−n and identities of the
generalized Pell numbers as follows:

Pn+1Pn−1 − (Pn)2 = (−1)n eP , (2.48)

Pn+2Pn−1 − PnPn+1 = 2(−1)n eP , (2.49)

Pn+3Pn−1 + Pn+1Pn+1 − 2PnPn+2 = 6 (−1)n eP , (2.50)

Pn+4Pn−1 + Pn+2Pn+1 − 2PnPn+3 = 14 (−1)n eP , (2.51)

eP = p2 − 2p q − q2.

Let the generalized Pell–Lucas sequence (qn) be defined as follows:
q0 = 2p− 2q, q1 = 2p+ 2q, q2 = 6p+ 2q, p q ∈ Z
qn = 2qn−1 + qn−2, n ≥ 2

or

qn = (p− 2q) qn + q qn+1 = p qn + q qn−1.

(2.52)

Here, qn is the n-th generalized Pell–Lucas number that defined as follows:

(qn) : 2 p− 2 q , 2 p+ 2 q , 6 p+ 2 q , 14 p+ 6 q , 34 p+ 14 q , , . . . , p qn + q qn−1, . . . (2.53)

and let the generalized dual Pell–Lucas quaternion be defined as follows:

{Dq
n = qn + i qn+1 + j qn+2 + k qn+3 | qn, n-th gen. Pell–Lucas number } (2.54)

where
i2 = j2 = k2 = i j k = 0 , i j = −j i = j k = −k j = k i = −i k = 0.

(2.47): By using (2.53) and (2.54) we get

Dq
n−1Dq

n+1 − (Dq
n)

2 = (qn−1 + i qn + j qn+1 + k qn+2)

(qn+1 + i qn+2 + j qn+3 + k qn+4)

−( qn + i qn+1 + j qn+2 + k qn+3 )
2

= [ qn−1 qn+1 − (qn)
2]

+i [ qn−1 qn+2 + qn qn+1 − 2 qn qn+1]

+j [ qn−1 qn+3 − 2 qn qn+2 + (qn+1)
2 ]

+k [ qn−1 qn+4 + qn+1 qn+2 − 2 qn qn+3]

= 8 (−1)n+1 eq (1 + 2i+ 6j + 14k).

where we use identity of the Pell–Lucas number qn−1 qn+1 − qn qn = 8 (−1)n+1 and identities of
the generalized Pell–Lucas numbers as follows:

qn+1 qn−1 − (qn)
2 = 8 (−1)n+1 eq, (2.55)

qn+2 qn−1 − qn qn+1 = 16(−1)n+1 eq, (2.56)
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qn+3 qn−1 + qn+1 qn+1 − 2 qn qn+2 = 48 (−1)n+1 eq, (2.57)

qn+4 qn−1 + qn+2 qn+1 − 2 qn qn+3 = 112 (−1)n+1 eq, (2.58)

eq = p2 − 2p q − q2.

Special Case: From the equations (2.46) and (2.47) for p = 1, q = 0 and eP = eq = 1 , we obtain
all results in [24] as a special case as follows:

DP
n−1D

P
n+1 − (DP

n )
2 = (−1)n (1 + 2i+ 6j + 14k) (2.59)

and
Dq
n−1D

q
n+1 − (Dq

n)
2 = 8(−1)n+1 (1 + 2i+ 6j + 14k). (2.60)

We will give an example in which we check in a particular case the Cassini-like identity for the
generalized dual Pell quaternions.

Example 1. Let DP
1, DP

2, DP
3 and DP

4 be the generalized dual Pell quaternions such that

DP
1 = p+ i(2p+ q) + j(5p+ 2q) + k(12p+ 5q)

DP
2 = (2p+ q) + i(5p+ 2q) + j(12p+ 5q) + k(29p+ 12q)

DP
3 = (5p+ 2q) + i(12p+ 5q) + j(29p+ 12q) + k(70p+ 29q)

DP
4 = (12p+ 5q) + i(29p+ 12q) + j(70p+ 29q) + k(169p+ 70q).

In this case,

Dp
1Dp

3 − (Dp
2)

2 = [p+ i (2p+ q) + j (5p+ 2q) + k (12p+ 5q)]

[(5p+ 2q) + i (12p+ 5q) + j (29p+ 12q) + k (70p+ 29q)]

−[(2p+ q) + i (5p+ 2q) + j (12p+ 5q) + k (29p+ 12q)]2

= (p2 − 2p q − q2) + i (2p2 − 4p q − 2q2)

+j (6p2 − 12 p q − 6 q2) + k (14p2 − 28 p q − 14 q2)

= (p2 − 2p q − q2)(1 + 2i+ 6j + 14k)

= (−1)2 eP (1 + 2i+ 6j + 14k)

and

DP
2DP

4 − (DP
3)

2 = [(2p+ q) + i (5p+ 2q) + j (12p+ 5q) + k (29p+ 12q)]

[(12p+ 5q) + i (29p+ 12q) + j (70p+ 29q) + k (169p+ 70q)]

− [(5p+ 2q) + i (12p+ 5q) + j (29p+ 12q) + k (70p+ 29q)]2

= (−p2 + 2p q + q2) + i (−2p2 + 4p q + 2q2)

+j (−6p2 + 12 p q + 6 q2) + k (−14p2 + 28 p q + 14 q2)

= − (p2 − 2p q − q2)(1 + 2i+ 6j + 14k)

= (−1)3 eP (1 + 2i+ 6j + 14k).
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Example 2. Let Dq
1, Dq

2, Dq
3 and Dq

4 be the generalized dual Pell–Lucas quaternions such
that 

Dq
1 = (2p+ 2q) + i(6p+ 2q) + j(14p+ 6q) + k(34p+ 14q)

Dq
2 = (6p+ 2q) + i(14p+ 6q) + j(34p+ 14q) + k(82p+ 34q)

Dq
3 = (14p+ 6q) + i(34p+ 14q) + j(82p+ 34q) + k(198p+ 82q)

Dq
4 = (34p+ 14q) + i(82p+ 34q) + j(198p+ 82q) + k(478p+ 198q).

In this case,

Dq
1Dq

3 − (Dq
2)

2 = [(2p+ 2q) + i (6p+ 2q) + j (14p+ 6q) + k (34p+ 14q)]

[(14p+ 6q) + i (34p+ 14q) + j (82p+ 34q)

+k (198p+ 82q)]

−[(6p+ 2q) + i (14p+ 6q) + j (34p+ 14q)

+k (82p+ 34q)]2

= − (8 p2 − 16 p q − 8 q2)− i (16p2 − 32p q − 16q2)

−j (48p2 − 160 p q − 48 q2)− k (112p2 − 224 p q − 112 q2)

= −8(p2 − 2p q − q2)(1 + 2i+ 6j + 14k)

= 8 (−1)3 eq (1 + 2i+ 6j + 14k)

and

Dq
2Dq

4 − (Dq
3)

2 = [(6p+ 2q) + i (14p+ 6q) + j (34p+ 14q) + k (82p+ 34q)]

[(34p+ 14q) + i (82p+ 34q) + j (198p+ 82q)

+k (478p+ 198q)]

− [(14p+ 6q) + i (34p+ 14q) + j (82p+ 34q)

+k (198p+ 82q)]2

= 8 (p2 − 2p q − q2) + 16 i (p2 − 2p q − q2)
+48 j (p2 − 2 p q − q2) + 112 k (p2 − 2 p q − q2)

= 8 (p2 − 2p q − q2)(1 + 2i+ 6j + 14k)

= 8 (−1)4 eq (1 + 2i+ 6j + 14k).

3 Conclusion

The generalized dual Pell quaternions is given by

DP
n = Pn + iPn+1 + j Pn+2 + k Pn+3, (3.1)

where Pn is the n-th generalized Pell number and i, j, k are quaternionic units which satisfy the
equalities

i2 = j2 = k2 = 0 , i j = −j i = j k = −k j = k i = −i k = 0 .
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The generalized dual Pell–Lucas quaternions is given by

Dq
n = qn + i qn+1 + j qn+2 + k qn+3, (3.2)

where qn is the n-th generalized Pell–Lucas number and i, j, k are quaternionic units which satisfy
the equalities

i2 = j2 = k2 = 0 , i j = −j i = j k = −k j = k i = −i k = 0 .

Also, from the generalized dual Pell quaternions and the generalized dual Pell–Lucas quater-
nions for p = 1, q = 0 , we obtain results of the dual Pell quaternions and the dual Pell–Lucas
quaternions given by Torunbalcı Aydın and Yüce [24] as a special case.
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[17] Akyiğit, M., Kösal, H. H., & Tosun, M. (2013) Split Fibonacci Quaternions. Adv.
Appl.Clifford Algebras., 23(3), 535–545.

[18] Majernik, V. (2006) Quaternion formulation of the Galilean space-time transformation. Acta
Phy. Slovaca., 56 (1), 9–14.
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