Ş. Uygun and S. Yaşamalı

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 23, 2017, Number 1, Pages 91–98

**Full paper (PDF, 175 Kb)**

## Details

### Authors and affiliations

Ş. Uygun

*Department of Mathematics, Science and Art Faculty
Gaziantep University, Campus, 27310, Gaziantep, Turkey
*

S. Yaşamalı

*Department of Mathematics, Science and Art Faculty
Gaziantep University, Campus, 27310, Gaziantep, Turkey
*

### Abstract

In this study, we have found upper and lower bounds for the spectral norms of circulant matrices in the forms *A* = *C _{r}*(

*j*

_{0},

*j*

_{1}, …,

*j*

_{n−1}) and

*B*=

*C*(

_{r}*c*

_{0},

*c*

_{1}, …,

*c*

_{n−1}).

### Keywords

- Jacobsthal number
- Jacobsthal–Lucas number
- Circulant matrix
- Norm

### AMS Classification

- 15A36
- 15A45
- 15A60

### References

- Horadam, A. F. (1996) Jacobsthal Representation Numbers, The Fibonacci Quarterly, 34(1), 40–54.
- Koshy, T. (2001) Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc., New York.
- Sloane, N. J. A. (2006) The on-line Encyclopedia of Integer Sequences.
- Zielke, G. (1988) Some remarks on matrix norms, condition numbers and error estimates for linear equations, Linear Algebra and its Applications, 110, 29–41.
- Mathias, R. (1990) The spectral norm of nonnegative matrix, Linear Algebra and its Applications, 131, 269–284.
- Reams, R. (1999) Hadamard inverses square roots and products of almost semidefinite matrices, Linear Algebra and its Applications, 288, 35–43.
- Solak, S. & Bozkurt, D. (2003) On the spectral norms of Cauchy–Toeplitz and Cauchy– Henkel matrices, Appl. Math. Comput., 140, 231–238.
- Solak, S. (2005) On the norms of circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 160, 125–132.
- Shen, S. & Cen, J. (2010) On the bounds for the norms of
*r*-circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 216, 2891–2897. - Shen, S. (2010) On the spectral norms of
*r*-circulant matrices with the*k*-Fibonacci and*k*-Lucas numbers, Int. J. Contemp. Math. Sciences, 5(12) 569–578. - Horn, R. A. & Johnson, C. R. (1991) Topics in Matrix Analysis, Cambridge University Press, Cambridge.
- Uygun, Ş. (2015) The (
*s*,*t*)-Jacobsthal and (*s*,*t*)-Jacobsthal–Lucas sequences, Applied Mathematical Sciences, 70(9), 3467–3476. - Uslu, K., Taskara, N. & Uygun, Ş. (2011) The relations among
*k*-Fibonacci,*k*-Lucas and generalized*k*-Fibonacci numbers and the spectral norms of the matrices of involving these numbers, Ars Combinatoria, 102, 183–192.

## Related papers

- Soykan, Y. (2021). On
*k*-circulant matrices with the generalized third-order Pell numbers.*Notes on Number Theory and Discrete Mathematics*, 27(4), 187-206.

## Cite this paper

Uygun, Ş. & Yaşamalı, S. (2017). On the bounds for the norms of circulant matrices with the Jacobsthal and Jacobsthal–Lucas numbers. *Notes on Number Theory and Discrete Mathematics*, 23(1), 91-98.