Yasutsugu Fujita and Alain Togbé
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 17, 2011, Number 4, Pages 42—49
Download full paper: PDF, 194 Kb
Details
Authors and affiliations
Yasutsugu Fujita
Department of Mathematics, College of Industrial Technology
Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
Alain Togbé
Mathematics Department, Purdue University North Central
1401 S, U.S. 421, Westville, IN 46391, USA
Abstract
Let n be a nonzero integer. A set of m distinct positive integers is called a D(n)-m-tuple if the product of any two of them increased by n is a perfect square. Let k be an integer greater than two. In this paper, we show that if {k2 − 4, k2, 4k2 − 4, d} is a D(4k2)-quadruple, then d = 4k4 − 8k2.
Keywords
- Diophantine tuples
- Simultaneous Diophantine equations
AMS Classification
- 11D09
- 11J68
References
- Baker, A., H. Davenport, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2. Quart. J. Math. Oxford Ser. Vol. 20, 1969, 129–137.
- Bennett, M. A. On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math., Vol. 498, 1998, 173–199.
- Brown, E. Sets in which xy + k is a always a square. Math. Comp., Vol. 45, 1985, 613–620.
- Dujella, A. Generalization of a problem of Diophantus. Acta Arith., Vol. 65, 1993, 15–27.
- Dujella, A. On the exceptional set in the problem of Diophantus and Davenport. Applications of Fibonacci Numbers, Vol. 7, 1998, 69–76.
- Dujella, A. An absolute bound for the size of Diophantine m-tuples. J. Number Theory, Vol. 89, 2001, 126–150.
- Dujella, A. There are only finitely many Diophantine quintuples. J. Reine Angew. Math., Vol. 566, 2004, 183–214.
- Dujella, A., A. Filipin, C. Fuchs. Effective solution of the D(−1)-quadruple conjecture. Acta Arith., Vol. 128, 2007, 319–338.
- Dujella, A., A. Peth, A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser., Vol. 49, September 1998, No. 195, 291–306.
- Dujella, A., A. M. S. Ramasamy. Fibonacci numbers and sets with the property D(4). Bull. Belg. Math. Soc. Simon Stevin, Vol. 12, 2005, 401–412.
- Filipin, A. Extensions of some parametric families of D(16)-triples. Int. J. Math. Math. Sci., 2007, Article ID 63739, 12 pages.
- Filipin, A., B. He, A. Togbé, On the D(4)-triple {F2k, F2k+6, 4F2k+4}. Fibonacci Quart., Vol. 48, 2010, 219–227.
- Fujita, Y. The non-extensibility of D(4k)-triples {1, 4k(k − 1), 4k2 + 1} with |k| prime. Glas. Mat. Ser., Vol. III 41, 2006, 205–216.
- Fujita, Y. The extensibility of Diophantine pairs {k − 1, k + 1}. J. Number Theory, Vol. 128, 2008, 322–353.
- Fujita, Y. Extensions of the D(∓k2)-triples {k2, k2 ± 1; 4k2 ± 1}. Period. Math. Hungarica, Vol. 59, 2009, 81–98.
- Gupta, H., K. Singh, On k-triad sequences. Internat. J. Math. Math. Sci., Vol. 8, 1985, 799–804.
- He, B., A. Togbé. On a family of Diophantine triples {k, A2k+2A, (A+1)2k+2(A+1)} with two parameters. Acta Math. Hungar., Vol. 124, 2009, 99–113.
- Matveev, E. M. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math., Vol. 64, 2000, 1217–1269.
- Mohanty, S. P., A. M. S. Ramasamy, On Pr,k sequences. Fibonacci Quart., Vol. 23, 1985, 36–44.
- Mollin, R. A. Quadratics. CRC Press, 1996.
- Rickert, J. H. Simultaneous rational approximation and related Diophantine equations. Math. Proc. Cambridge Philos. Soc., Vol. 113, 1993, 461–472.
Related papers
Cite this paper
Fujita, Y., & Togbé, A. (2011). Uniqueness of the extension of the D(4k2)-triple {k2 – 4, k2, 4k2 – 4}, Notes on Number Theory and Discrete Mathematics, 17(4), 42-49.