J. V. Leyendekkers, J. M. Rybak and A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 3, 1997, Number 1, Pages 41–51
Full paper (PDF, 291 Kb)
Details
Authors and affiliations
J. V. Leyendekkers
The University of Sydney, 2006, Australia
J. M. Rybak
The University of Sydney, 2006, Australia
A. G. Shannon
University of Technology, Sydney, 2007, Australia
Abstract
In similar manner to the analysis for even-exponent triples, this paper uses the equivalence classes of the modular ring ℤ6 to show why the diophantine equation dm = em + fm, where m is odd, is limited to m = 1 in ℤ6.
References
- J.V. Leyendekkers, J.M. Rybak and A.G. Shannon, The anatomy of even exponent Pythagorean triples. Notes on Number Theory and Discrete Mathematics, 2, 1, 1996, 33-52.
- J.V. Leyendekkers, J.M. Rybak and A.G. Shannon, Integer class properties associated with an integer matrix. Notes on Number Theory and Discrete Mathematics, 1, 2, 1995, 53-59.
- Alf van der Poorten, Notes on Fermat’s Last Theorem; New York: Wiley, 1996.
Related papers
Cite this paper
Leyendekkers, J. V., Rybak, J. M. & Shannon, A. G. (1997). The anatomy of odd-exponent Diophantine triples. Notes on Number Theory and Discrete Mathematics, 3(1), 41-51.