Strong Bertrband’s postulate revisited

L. Panaitopol
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 5, 1999, Number 3, Pages 121–123
Full paper (PDF, 92 Kb)

Details

Authors and affiliations

L. Panaitopol
University of Bucharest,
Departament of Mathematics,
14, Academiei St. 70109,
Bucharest, Romania

References

  1. G. Robin, Estimation de la fonction de Tchebyschev θ sur k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta. Arith. 42 (1983), pp. 367 – 389;
  2. J B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math 6 (1962), pp. 64 – 94;
  3. J. Sándor, On a stronger Bertrand’s postulate, Bull Number Theory, 11 (1987). pp. 162- 166;
  4. V. Udrescu, A stronger Bertrand’s postulate, Preprint No. 34 (1974), INCREST, Bucharest, 1974.

Related papers

Cite this paper

Panaitopol, L. (1999). Strong Bertrband’s postulate revisited. Notes on Number Theory and Discrete Mathematics, 5(3), 121-123.

Comments are closed.