Anthony G. Shannon and Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 12–15
DOI: 10.7546/nntdm.2021.27.3.12-15
Full paper (PDF, 154 Kb)
Details
Authors and affiliations
Anthony G. Shannon ![]()
Warrane College, The University of New South Wales
356 Anzac Parade, Kensington, NSW 2033, Australia
Krassimir T. Atanassov ![]()
Department of Bioinformatics and Mathematical Modelling
IBPhBME, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria
and
Intelligent Systems Laboratory, Prof. Asen Zlatarov University
1 Prof. Yakimov Blvd, Bourgas-8010, Bulgaria
Abstract
An explicit form of A. Shannon’s arithmetic function δ is given. A possible application of it is discussed for representation of the well-known arithmetic functions ω and Kronecker’s delta-function δm,s
Keywords
- Arithmetic function
- δ-function
- ω-function
2020 Mathematics Subject Classification
- 11A25
References
- Atanassov, K. (1984). On one problem of A. Mullin. Bulletin of Number Theory and Related Topics, VIII(3), 1–5.
- Atanassov, K. (2006). On some intuitionistic fuzzy implications. Comptes Rendus de l’Academie bulgare des Sciences, 59(1), 19–24.
- Horadam, A. F., & Shannon, A. G. (1976). Ward’s Staudt–Clausen problem. Mathematica Scandinavica, 29, 239–250.
- Horadam, E. M. (1963). The Euler ϕ function for generalized integers. Proceedings of the American Mathematical Society, 14, 754–762.
- Iverson, K. E. (1980). Notation as a Tool of Thought. Communications of the Association for Computing Machinery, 23, 444–465.
- Popken, J. (1995). On convolutions in number theory. Indagationes Mathematicae, 17, 10–15.
- Shannon, A. G. (1976). Some number theoretic properties of arbitrary order recursive sequences. Bulletin of the Australian Mathematical Society, 14, 149–151.
- Ward, M. (1936). A calculus of sequences. American Journal of Mathematics, 58, 255–266.
Related papers
Cite this paper
Shannon, A. G., & Atanassov, K. T. (2021). A short remark on an arithmetic function. Notes on Number Theory and Discrete Mathematics, 27(3), 12-15, DOI: 10.7546/nntdm.2021.27.3.12-15.
