Pietro Paparella
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 119–122
DOI: 10.7546/nntdm.2021.27.3.119-122
Full paper (PDF, 146 Kb)
Details
Authors and affiliations
Pietro Paparella
Division of Engineering and Mathematics, University of Washington Bothell
18115 Campus Way NE, Bothell, WA 98011, United States
Abstract
In this note, it is shown that if and are positive integers such that , then there is a Perron number such that . It is also shown that there is an aperiodic integer matrix such that .
Keywords
- Perron number
- Fermat equation
- Integer matrix
- Aperiodic matrix
2020 Mathematics Subject Classification
- 11D41
- 15B36
References
- Arnold, M., & Eydelzon, A. (2019). On matrix Pythagorean triples. The American Mathematical Monthly, 126(2), 158–160.
- Brenner, J. L., & de Pillis, J. (1972). Fermat’s equation Ap + Bp = Cp for matrices of integers. Mathematics Magazine, 45, 12–15.
- Brualdi, R. A., & Ryser, H. J. (1991). Combinatorial Matrix Theory. Cambridge: Cambridge University Press.
- Horn, R. A., & Johnson, C. R. (1990). Matrix Analysis. Cambridge: Cambridge University Press.
- Lind, D. A. (1983). Entropies and factorizations of topological Markov shifts. Bulletin of the American Mathematical Society, 9(2), 219–222.
- Lind, D. A. (1984). The entropies of topological Markov shifts and a related class of algebraic integers. Ergodic Theory and Dynamical Systems, 4, 283–300.
Related papers
Cite this paper
Paparella, P. (2021). Perron numbers that satisfy Fermat’s equation. Notes on Number Theory and Discrete Mathematics, 27(3), 119-122, DOI: 10.7546/nntdm.2021.27.3.119-122.