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Abstract: In this note, it is shown that if ` and m are positive integers such that ` > m, then
there is a Perron number ρ such that ρn + (ρ + m)n = (ρ + `)n. It is also shown that there is an
aperiodic integer matrix C such that Cn + (C +mIn)n = (C + `In)n.
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1 Introduction

As is well-known, Fermat’s last theorem guarantees that the Diophantine equation

xn + yn = zn, (1)

called the Fermat equation, has no nontrivial solutions. Although the case concerning integer
solutions is settled, effort has been spent in identifying solutions of (1) with respect to other
rings: e.g., Arnold and Eydelzon [1] presented a parameterization for Pythagorean matrices,
which is an ordered triple (A,B,C) of integral matrices such that A2 + B2 = C2; and Brenner
and de Pillis [2] investigated when the existence of nonsingular matrices A, B, C ∈ Mn(Z) to the
Fermat matrix equation Ap +Bp = Cp, p > 2 guaranteed the existence of a nontrivial triple a, b,
and c of algebraic integers to the corresponding Fermat equation ap + bp = cp, and vice-versa.

In this work, we extend the work of Brenner and de Pillis and show that if ` and m are
positive integers such that ` > m, then there is a Perron number ρ such that (ρ, ρ + m, ρ + `)

satisfies (1). Additionally, it is also shown that there is an aperiodic integer matrix C such that
(C,C +mIn, C + `In) satisfies (1).
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2 Background

If A is a nonnegative matrix, then A is called aperiodic if there is a positive integer k such
that Ak is entrywise positive. The Perron–Frobenius theorem for positive matrices (see, e.g.,
[4, Theorem 8.2.10]) asserts that the spectral radius

ρ = ρ(A) := max({|λ| : λ ∈ σ(A)})

is a simple eigenvalue of A. If, in addition, A has integer entries, then ρ is a positive algebraic
integer that dominates its algebraic conjugates in modulus. Such a number is called a Perron
number [5]. Conversely, if ρ is an algebraic integer that dominates its algebraic conjugates in
modulus, then there is an aperiodic integer matrix with spectral radius ρ [5, Theorem 1]. The
set of Perron numbers P is closed with respect to addition and multiplication [6, Section 5] and
represents the closure of N with respect to taking the spectral radius of aperiodic integer matrices.

If A = [aij] ∈ Mn(C), then the digraph of A, denoted by Γ(A), is the directed graph with
vertices V = {1, . . . , n} and edges E = {(i, j) ∈ V 2 | aij 6= 0}. For n ≥ 2, an n × n matrix A
is called reducible if there is a permutation matrix P such that

P>AP =

[
A11 A12

0 A22

]
,

in which A11 and A22 are nonempty square matrices. If A is not reducible, then A is called
irreducible, and A is irreducible if and only if Γ(A) is strongly connected [3, Theorem 3.2.1].

An irreducible nonnegative matrix is called primitive if its digraph is primitive (i.e., the
greatest common divisor of the lengths of the closed directed walks is one); otherwise it is
imprimitive. IfA is nonnegative, thenA is aperiodic if and only ifA is primitive [3, Theorem 3.4.4].

Given an n × n matrix A, the characteristic polynomial of A, denoted by χA, is defined by
χA(t) = det (tI − A). The companion matrix C = Cp of a monic polynomial

p(t) = tn +
n∑

k=1

cn−kt
n−k

is the n× n matrix [
0 I

−c0 −c

]
,

where c =
[
c1 · · · cn−1

]
. It is well-known that χC = p. Notice that if ci 6= 0, then Γ(C)

contains a cycle of length n− i.

3 Perron numbers that satisfy the Fermat equation

Given positive integers ` > m and ρ ∈ C, note that, as a consequence of the binomial theorem,
ρn + (ρ+m)n = (ρ+ `)n if and only if ρ is a zero of the polynomial

p(t) = pn(t) = tn −
n∑

k=1

(
n

k

)
tn−k(`k −mk). (2)

The fundamental theorem of algebra ensures that p has, counting multiplicities, n zeros.
However, more can be said about these zeros.
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Theorem 3.1. Let n ∈ N. If ` and m are positive integers such that ` > m, then there is a Perron
number ρ such that (ρ, ρ+m, ρ+ `) satisfies (1).

Proof. Let p be the monic polynomial defined as in (2). For i ∈ {0, 1, . . . , n− 1}, let

ci :=

(
n

i

)(
`n−i −mn−i) .

The companion matrix

C =


1

. . .
1

c0 c1 · · · cn−1

 ∈ Mn(Z) (3)

is nonnegative because ci > 0, 0 ≤ i ≤ n− 1. Since the digraph Γ(C) has a cycle of length i, for
every i ∈ {1, . . . , n}, it follows that Γ(C) is primitive, i.e., the matrix C is aperiodic. Thus, the
spectral radius ρ = ρ(C) is a Perron number that is a zero of p.

Lastly, notice that ρ + m and ρ + ` are the spectral radii of the aperiodic integral matrices
C +mIn and C + `In, respectively.

Remark 3.2. Since

p′n(t) = ntn−1 −
n−1∑
k=1

(
n

k

)
(n− k)tn−k−1(`k −mk)

and (
n

k

)
(n− k) =

n!(n− k)

k!(n− k)!
= n

(n− 1)!

k!(n− 1− k)!
= n

(
n− 1

k

)
,

it follows that
p′n(t)

n
= tn−1 −

n−1∑
k=1

(
n− 1

k

)
tn−k−1(`k −mk) = pn−1(t).

By the Gauss–Lucas theorem, which asserts that the critical points of a polynomial lie in the
convex hull of its zeros, it follows that the zeros of pn−1 are in the convex hull of the zeros of pn.

4 Aperiodic matrices that satisfy the Fermat equation

Brenner and de Pillis [2] showed that if

A :=


a

. . .
1

1

 ∈ Mn(R),

with a ∈ N, then An = aI . As such, identifying solutions to (1) with respect to irreducible
nonnegative integer matrices is somewhat trivial. However, requiring that the matrices be aperiodic
is a natural and interesting restriction.
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Theorem 4.1. Let n ∈ N. If ` and m are positive integers such that ` > m, then there is an
aperiodic integer matrix C such that (C,C +mIn, C + `In) satisfies (1).

Proof. Let p be the monic polynomial defined as in (2) and C be the nonnegative companion
matrix defined as in (3). By the Cayley–Hamilton theorem, p(C) = 0, i.e.,

0 = Cn −
n∑

k=1

(
n

k

)
Cn−k(`k −mk). (4)

Since C commutes with aIn, ∀a ∈ N, it follows from the binomial theorem that

(C + aIn)n =
n∑

k=0

(
n

k

)
Cn−k(aIn)k =

n∑
k=0

(
n

k

)
akCn−k. (5)

Adding Cn to both sides of (4) and applying (5) yields

Cn + (C +mIn)n = (C + `In)n.

Remark 4.2. We conclude by noting that if Z is an invertible integer matrix such that detZ = ±1

and A = ZCZ−1, then (A,A + mIn, A + `In) is an ordered triple of integer matrices that
satisfies (1).
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