Wuttichai Suriyacharoen and Vichian Laohakosol
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 1–11
DOI: 10.7546/nntdm.2021.27.3.1-11
Full paper (PDF, 206 Kb)
Details
Authors and affiliations
Wuttichai Suriyacharoen ![]()
Department of Mathematics and Statistics, Thammasat University
99 Moo 18 Paholyothin Rd, Klong Nueng, Klong Luang, Pathumthani 12121, Thailand
Vichian Laohakosol ![]()
Department of Mathematics, Kasetsart University
50 Ngamwongwan Rd, Chatuchak, Bangkok 10900, Thailand
Abstract
For a fixed positive integer
, the functional equation
![]()
is solved for multiplicative functions
. This complements a 1996 result of Chung [2] which deals with the case
. The method used relies on the sum of two squares theorem in number theory.
Keywords
- Arithmetic function
- Multiplicative function
- Functional equation
- Sum of squares
2020 Mathematics Subject Classification
- 11A25
- 39B52
References
- Bašić, B. (2014). Characterization of arithmetic functions that preserve the sum-of-squares operation. Acta Mathematica Sinica, 4, 689–695.
- Chung, P. V. (1996). Multiplicative functions satisfying the equation f(m2+n2) = f(m2)+f(n2). Mathematica Slovaca, 46, 165–171.
- Dubickas, A., & Šarka, P. (2013). On multiplicative functions which are additive on sums of primes. Aequationes Mathematicae, 86, 81–89.
- Fang, J. H. (2011). A characterization of the identity function with equation
f(p + q + r) = f(p) + f(q) + f(r). Combinatorica, 31, 697–701. - Kátai, I.,& Phong, B. M. (2014). The functional equation f(A + B) = g(A) + h(B). Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös nominatae. Sectio Computatorica, 43, 287–301.
- Khanh, B. M. M. (2015). On the equation f(n2 + Dm2) = f(n)2 + Df(m)2. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös nominatae. Sectio Computatorica, 44, 59–68.
- Khanh, B. M. M. (2019). A note on a result of B. Bojan. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös nominatae. Sectio Computatorica, 49, 285–297.
- Kim, B., Kim, J. Y., Lee, C. G., & Park, P.-S. (2018). Multiplicative functions additive on generalized pentagonal numbers. Comptes Rendus Mathematique, 356(2), 125–128.
- McCarthy P. J. (1985). Introduction to Arithmetical Functions. Springer, New York.
- Niven, I., Zuckerman, H. S., & Montgomery, H. L. (1991). An Introduction to the Theory of Numbers. Wiley, New York.
- Park, P.-S. (2018). Multiplicative functions commutable with sums of squares. International Journal of Number Theory, 2, 469–478.
- Park, P.-S. (2018). On k-additive uniqueness of the set of squares for multiplicative functions. Aequationes Mathematicae, 92, 487–495.
- Spiro, C. (1992). Additive uniqueness sets for arithmetic functions. Journal of Number Theory, 42, 232–246.
Related papers
Cite this paper
Suriyacharoen, W., & Laohakosol, V. (2021). Multiplicative functions satisfying the functional equation κf(m2+n2) = f(κm2) + f(κn2). Notes on Number Theory and Discrete Mathematics, 27(3), 1-11, DOI: 10.7546/nntdm.2021.27.3.1-11.
