Jorma K. Merikoski
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 2, Pages 79–87
DOI: 10.7546/nntdm.2021.27.2.79-87
Full paper (PDF, 196 Kb)
Details
Authors and affiliations
Jorma K. Merikoski
Faculty of Information Technology and Communication Sciences, Tampere University
FI-33014 Tampere, Finland
Abstract
We say that a monic polynomial with integer coefficients is a polygomial if its each zero is obtained by squaring the edge or a diagonal of a regular n-gon with unit circumradius. We find connections of certain polygomials with Morgan-Voyce polynomials and further with Chebyshev polynomials of second kind.
Keywords
- Regular polygons
- Morgan-Voyce polynomials
- Chebyshev polynomials
- Vieta polynomials
2020 Mathematics Subject Classification
- 11B83
- 51M20
References
- André-Jeannin, R. (1994). A generalization of Morgan-Voyce polynomials. The Fibonacci Quarterly, 32, 228–231.
- Hoggatt, V. E., & Bicknell, M. (1974). A primer for the Fibonacci numbers: Part XIV. The Fibonacci Quarterly, 12, 147–156.
- Horadam, A. F. (1996). Polynomials associated with generalized Morgan-Voyce polynomials. The Fibonacci Quarterly, 34, 342–348.
- Horadam, A. F. (1997). A composite of Morgan-Voyce generalizations. The Fibonacci Quarterly, 35, 233–239.
- Horadam, A, F. (2002). Vieta polynomials. The Fibonacci Quarterly, 40, 223–232.
- Morgan-Voyce, A. M. (1959). Ladder networks analysis using Fibonacci numbers. IRE Transactions on Circuit Theory, 6, 321–322.
- Mustonen, S., Haukkanen, P., & Merikoski, J. (2014). Some polynomials associated with regular polygons. Acta Universitatis Sapientiae, Mathematica, 6, 178–193.
- OEIS: The On-Line Encyclopedia of Integer Sequences. Available online at http://oeis.org/.
- Swamy, M. N. S. (1966). Properties of the polynomials defined by Morgan-Voyce. The Fibonacci Quarterly, 4, 73–81.
- Swamy, M. N. S. (1968). Further properties of Morgan-Voyce polynomials. The Fibonacci Quarterly, 6, 167–175.
- Vaino, N. (2020). Private communication.
Related papers
Cite this paper
Merikoski, J. K. (2021). Regular polygons, Morgan-Voyce polynomials, and Chebyshev polynomials. Notes on Number Theory and Discrete Mathematics, 27(2), 79-87, DOI: 10.7546/nntdm.2021.27.2.79-87.