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1 Introduction

We call the edge and diagonals of a polygon by a common name chord. LetGn be a regular n-gon
with unit circumradius. Its chords (their lengths) are

enk = 2 sin
kπ

n
, k = 1, . . . ,

⌊n
2

⌋
.

We say that a monic polynomial with integer coefficients is a polygomial if its all zeros are squared
chords (not necessarily squares of all chords) of some Gn.

This paper is a sequel to Mustonen et al. [7, Section 2] on the polygomials

Am(x) =
m∑
k=0

(−1)m−k
(
m+ k + 1

2k + 1

)
xk =

m∏
k=1

[
x− 4 sin2 kπ

2(m+ 1)

]
(1)

(for the second equation, see [7, Theorem 1]) and
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Ãm(x) = xm +
m−1∑
k=0

(−1)m−k 2m+ 1

m− k

(
m+ k

2k + 1

)
xk =

m∏
k=1

[
x− 4 sin2 kπ

2m+ 1

]
(for the second equation, see [7, Theorem 2]). Define that the “empty sum” is zero and the “empty
product” one; then A0(x) = Ã0(x) = 1. In [7], Bm = Ãm and Ãm has another meaning.

Example 1.1. In particular,

A1(x) = x− 2, A2(x) = x2 − 4x+ 3, A3(x) = x3 − 6x2 + 10x− 4,

A4(x) = x4 − 8x3 + 21x2 − 20x+ 5,

Ã1(x) = x− 3, Ã2(x) = x2 − 5x+ 5, Ã3(x) = x3 − 7x2 + 14x− 7,

Ã4(x) = x4 − 9x3 + 27x2 − 30x+ 9.

The sequence (Am) satisfies [7, Equation (6)] the recursion

A0(x) = 1, A1(x) = x− 2, Am+1(x) = (x− 2)Am(x)− Am−1(x), (2)

and (Ãm) satisfies [7, Equation (11)]

Ã0(x) = 1, Ã1(x) = x− 3, Ãm+1(x) = (x− 3)Am(x)− Am−1(x). (3)

We show that

Ã0(x) = 1, Ã1(x) = x− 3, Ãm+1(x) = (x− 2)Ãm(x)− Ãm−1(x). (4)

Thus (Ãm) follows the same recursion formula as (Am).
For all k ≥ 2,

Ãk(x)
(3)
= (x− 3)Ak−1(x)− Ak−2(x)

(2)
= (x− 3)Ak−1(x) + Ak(x)− (x− 2)Ak−1(x) = Ak(x)− Ak−1(x). (5)

Therefore

Ãm+1(x)− (x− 2)Ãm(x) + Ãm−1(x)

(5)
= Am+1(x)− Am(x)− (x− 2)(Am(x)− Am−1(x)) + Am−1(x)− Am−2(x)

= Am+1(x)− (x− 2)Am(x) + Am−1(x)− [Am(x)− (x− 2)Am−1(x) + Am−2(x)]

(2)
= 0− 0 = 0,

verifying the claim.
We are interested in connections of Am and Ãm with well-known polynomials. We introduce

in Sections 3 and 4 the Morgan-Voyce polynomials bm andBm, and their generalizationsB(r)
m . We

see that Am and Ãm are connected with Bm and B(2)
m , respectively. We also find a polygomial am

connected with bm. In Section 5, recalling how bm, Bm, and B
(2)
m reduce to the Chebyshev

polynomials of second kind, we reduce also am, Am, and Ãm to them. The motivation of bm
and Bm rises from a problem on a ladder network of resistances. We see in Section 6 that also am
and Am apply to this problem. Finally, we complete this paper with conclusions and remarks in
Section 7.
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2 Background

Let me first describe the background of this paper. Neeme Vaino, an amateur mathematician from
Estonia, introduced [11] his “regular polynomials”

Rn(x) =

bn
2
c∑

k=0

rnkx
n−2k,

whose coefficients are obtained from the OEIS [8] sequence A132460. Actually [5, Equation (1.5)]
Rn is the Vieta–Lucas polynomial

vn(x) =

bn
2
c∑

k=0

(−1)k n

n− k

(
n− k
k

)
xn−2k.

Example 2.1. In particular,

v1(x) = x, v2(x) = x2 − 2, v3(x) = x3 − 3x, v4(x) = x4 − 4x2 + 2,

v5(x) = x5 − 5x3 + 5x, v6(x) = x6 − 6x4 + 9x2 − 2.

The polygomial Ãm relates to v2m+1 via

v2m+1(x) = xÃm(x
2),

cf. [5, Theorem 3(b)].

Example 2.2. In particular,

xÃ2(x
2) = x(x4 − 5x2 + 5) = x5 − 5x3 + 5x = v5(x).

The Chebyshev polynomials of first kind are defined by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).

Example 2.3. In particular,

T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x, T6(x) = 32x6 − 48x4 + 18x2 − 1.

The polynomial vn relates to Tn [5, Equation (9.4)] via vn(x) = 2Tn(
x
2
).

Example 2.4. In particular,

2T4(
x

2
) = 2 ·

[
8
(x
2

)4
− 8

(x
2

)2
+ 1

]
= x4 − 4x2 + 2 = v4(x).

The Vieta–Fibonacci polynomials are defined by

Vn(x) =

bn
2
c∑

k=0

(−1)k
(
n− k
k

)
xn−2k,

cf. [5, Equation (1.3)]. Here Vn denotes the same as Vn+1 in [5], in order to make its degree equal
to n.
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Example 2.5. In particular,

V1(x) = x, V2(x) = x2 − 1, V3(x) = x3 − 2x, V4(x) = x4 − 3x2 + 1,

V5(x) = x5 − 4x3 + 3x, V6(x) = x6 − 5x4 + 6x2 − 1.

The polygomial Am relates to V2m+1 via V2m+1(x) = xAm(x
2), cf. [5, Theorem 2(a)].

Example 2.6. In particular,

xA2(x
2) = x(x4 − 4x2 + 3) = x5 − 4x3 + 3x = V5(x).

The Chebyshev polynomials of second kind are defined by

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x).

Example 2.7. In particular,

U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x, U4(x) = 16x4 − 12x2 + 1,

U5(x) = 32x5 − 32x3 + 6x, U6(x) = 64x6 − 80x4 + 24x2 − 1.

The polynomial Vn relates to Un via Vn(x) = Un(
x
2
), cf. [5, Equation (9.3)]. Actually Vn(x)

should read Vn+1(x) in this reference, in order to make (9.3) compatible with (1.3).

Example 2.8. In particular,

U4

(x
2

)
= 16

(x
2

)4
− 12

(x
2

)2
+ 1 = x4 − 3x2 + 1 = V4(x).

To summarize, Am relates to V2m+1 and further to U2m+1, and Ãm relates to v2m+1 and
further to T2m+1. But we will see that Am and Ãm have also more direct relations to well-known
polynomials.

3 Morgan-Voyce polynomials

Changing in Am all minus signs into plus, we define

Bm(x) = (−1)mAm(−x). (6)

This is one of the two Morgan-Voyce polynomials bm and Bm, usually defined by the recursion
pair

b0(x) = B0(x) = 1, bm+1(x) = xBm(x) + bm(x), Bm+1(x) = (x+ 1)Bm(x) + bm(x). (7)

Example 3.1. In particular,

b1(x) = x+ 1, b2(x) = x2 + 3x+ 1, b3(x) = x3 + 5x2 + 6x+ 1,

b4(x) = x4 + 7x3 + 15x2 + 10x+ 1,

B1(x) = x+ 2, B2(x) = x2 + 4x+ 3, B3(x) = x3 + 6x2 + 10x+ 4,

B4(x) = x4 + 8x3 + 21x2 + 20x+ 5.
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By (6) and (2),

B0(x) = 1, B1(x) = x+ 2, Bm+1(x) = (x+ 2)Bm(x)−Bm−1(x).

This recursion is well-known [9, p. 73] as a consequence of (7). Likewise,

b0(x) = 1, b1(x) = x+ 1, bm+1(x) = (x+ 2)bm(x)− bm−1(x).

By (6) and (1),

Bm(x) =
m∑
k=0

(
m+ k + 1

2k + 1

)
xk =

m∏
k=1

[
x+ 4 sin2 kπ

2(m+ 1)

]
.

Regarding zeros, this is well-known [9, Equation (39)] (the first of the two equations with this
number) and [10, Section 6]. Similarly, by [9, Equation (40)] and [10, Section 6] (containing a
typo),

bm(x) =
m∑
k=0

(
m+ k

2k

)
xk =

m∏
k=1

[
x+ 4 sin2 (2k − 1)π

2(2m+ 1)

]
. (8)

4 Counterparts of Ãm and bm

Equation (6) connects Am and Bm but does not connect Ãm and bm. Instead, bm is connected
with

am(x) = (−1)mbm(−x)
(8)
=

m∏
k=1

(−1)
[
− x+ 4 sin2 (2k − 1)π

2(2m+ 1)

]
=

m∏
k=1

[
x− 4 sin2 (2k − 1)π

2(2m+ 1)

]
. (9)

This is a polygomial, since its zeros are e24m+2,1, e24m+2,3, . . . , e24m+2,2m−1.

Example 4.1. In particular,

a1(x) = x− 1, a2(x) = x2 − 3x+ 1, a3(x) = x3 − 5x2 + 6x− 1,

a4(x) = x4 − 7x3 + 15x2 − 10x+ 1.

The Morgan-Voyce polynomials have been widely generalized, see [4] and its references.
André-Jeannin [1] generalizes them by the recursion

B
(r)
0 (x) = 1, B

(r)
1 (x) = x+ r + 1, B

(r)
m+1(x) = (x+ 2)B(r)

m (x)−B(r)
m−1(x),

where r is a given real number. In particular,

B(0)
m = bm, B(1)

m = Bm,

and the polynomials
B̃m = B(2)

m

satisfy the recursion

B̃0(x) = 1, B̃1(x) = x+ 3, B̃m+1(x) = (x+ 2)B̃m(x)− B̃m−1(x). (10)
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By (4) and (10), it is easy to see that

B̃m(x) = (−1)mÃm(−x). (11)

Example 4.2. In particular,

B̃1(x) = x+ 3, B̃2(x) = x2 + 5x+ 5, B̃3(x) = x3 + 7x2 + 14x+ 7,

B̃4(x) = x4 + 9x3 + 27x2 + 30x+ 9.

5 Chebyshev polynomials of second kind

It can be shown [4, Equations (4.2–4)] that

Bm(x) = Um

(
x+ 2

2

)
, (12)

bm(x) = Um

(
x+ 2

2

)
− Um−1

(
x+ 2

2

)
, (13)

B̃m(x) = Um

(
x+ 2

2

)
+ Um−1

(
x+ 2

2

)
. (14)

Example 5.1. In particular,

U1

(
x+ 2

2

)
= 2

x+ 2

2
= x+ 2 = B1(x),

U2

(
x+ 2

2

)
= 4

(
x+ 2

2

)2

− 1 = x2 + 4x+ 3 = B2(x),

U2

(
x+ 2

2

)
− U1

(
x+ 2

2

)
= x2 + 3x+ 1 = b2(x),

U2

(
x+ 2

2

)
+ U1

(
x+ 2

2

)
= x2 + 5x+ 5 = B̃2(x).

It is easy to see that
Um(−x) = (−1)mUm(x). (15)

Now,

Am(x)
(6)
= (−1)mBm(−x) (12)

= (−1)mUm

(
−x+ 2

2

)
(15)
= (−1)2mUm

(
x− 2

2

)
= Um

(
x− 2

2

)
,

am(x)
(9)
= (−1)mbm(−x) (13)

= (−1)m
(
Um

(
−x+ 2

2

)
− Um−1

(
−x+ 2

2

))
(15)
= (−1)m

[
(−1)mUm

(
x− 2

2

)
− (−1)m−1Um−1

(
x− 2

2

)]
= Um

(
x− 2

2

)
+ Um−1

(
x− 2

2

)
and

Ãm(x)
(11)
= (−1)mB̃m(−x) (14)

= (−1)m
(
Um

(
−x+ 2

2

)
+ Um−1

(
−x+ 2

2

))
(15)
= (−1)m

[
(−1)mUm

(
x− 2

2

)
+ (−1)m−1Um−1

(
x− 2

2

)]
= Um

(
x− 2

2

)
− Um−1

(
x− 2

2

)
.
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Example 5.2. In particular,

U1

(
x− 2

2

)
= 2

x− 2

2
= x− 2 = A1(x),

U2

(
x− 2

2

)
= 4

(
x− 2

2

)2

− 1 = x2 − 4x+ 3 = A2(x),

U2

(
x− 2

2

)
+ U1

(
x− 2

2

)
= x2 − 3x+ 1 = a2(x),

U2

(
x− 2

2

)
− U1

(
x− 2

2

)
= x2 − 5x+ 5 = Ã2(x).

6 Revisiting the ladder network

We show that am and Am apply to the same ladder network problem [2, 6] as bm and Bm. To
begin, we present a recursion pair for am and Am. Since

am+1(x)
(9)
= (−1)m+1bm+1(−x)

(7)
= (−1)m+1

[
(−x)Bm(−x) + bm(−x)

]
= x(−1)mBm(−x)− (−1)mbm(−x)

(6),(9)
= xAm(x)− am(x)

and

Am+1(x)
(6)
= (−1)m+1Bm+1(−x)

(7)
= (−1)m+1

[
(−x+ 1)Bm(−x) + bm(−x)

]
= (x− 1)(−1)mBm(−x)− (−1)mbm(−x)

(6),(9)
= (x− 1)Am(x)− am(x),

we have

a0(x) = A0(x) = 1, am+1(x) = xAm(x)−am(x), Am+1(x) = (x−1)Am(x)−am(x). (16)

We use the figures and notations of Hoggatt and Bicknell [2, Section 1]. Instead of x, we let
−x denote the resistance of each component in the upper sidepiece of the ladder. It is reasonable
to require that −x > 0, i.e., x < 0. However, it is not complete nonsense to accept also
nonpositive resistances, because we may think that the voltage across these components can be
increased externally. Anyway, whether or not to accept nonpositive resistances, it does not effect
on the following calculations.

We proceed as in [2, p. 148] but write R(x) = R and Zm(x) = Zn. Then

R(x) = Zm(x)− x,

1

Zm+1(x)
=

1

Zm(x)− x
+ 1 =

Zm(x)− x+ 1

Zm(x)− x
,

and

Zm+1(x) =
Zm(x)− x

Zm(x)− x+ 1
. (17)

We show that

Zm(x) =
am(x)

Am(x)
(18)

satisfies (17). Since
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Zm+1(x)
(18)
=

am+1(x)

Am+1(x)

(16)
=

xAm(x)− am(x)
(x− 1)Am(x)− am(x)

=
am(x)− xAm(x)

am(x)− (x− 1)Am(x)
=

am(x)
Am(x)

− x
am(x)
Am(x)

− x+ 1

(18)
=

Zm(x)− x
Zm(x)− x+ 1

,

the claim follows.

7 Conclusions and remarks

The polygomialAm is connected withBm via the equation (6). The Morgan-Voyce polynomial bm
defines by (9) the polygomial am. The polygomial Ãm has the connection (11) with the generalized
Morgan-Voyce polynomial B̃m = B

(2)
m . Since these Morgan-Voyce polynomials reduce to

Chebyshev polynomials of second kind via (12), (13), and (14), also the above-mentioned
polygomials reduce to them.

More generally, we define

A(r)
m (x) = (−1)mB(r)(−x).

In particular,
A(0)

m = am, A(1)
m = Am, A(2)

m = Ãm.

If r ∈ {0, 1, 2}, then A(r)
m is a polygomial. Is it a polygomial also for some other appropriate

values of r? To answer, we should find the zeros of B(r)
m . I did not find them from the literature.

According to Horadam [3, p. 348], André-Jeannin [1] has given them, but actually he [1, p. 231]
considered only the cases r = 0, 1, 2.
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