Pradipto Banerjee and Ranjan Bera
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 2, Pages 172–190
DOI: 10.7546/nntdm.2021.27.2.172-190
Full paper (PDF, 232 Kb)
Details
Authors and affiliations
Pradipto Banerjee ![]()
Department of Mathematics, Indian Institute of Technology, Hyderabad
Kandi, Telangana 502285, India
Ranjan Bera ![]()
Department of Mathematics, Indian Institute of Technology, Hyderabad
Kandi, Telangana 502285, India
Abstract
We consider the quartic generalized Laguerre polynomials
for
. It is shown that except
, every transitive subgroup of
appears as the Galois group of
for infinitely many
. A precise characterization of
is obtained for each of these occurrences. Our methods involve the standard use of resolvent cubics and the theory of
-adic Newton polygons. Using these, the Galois group computations are reduced to Diophantine problem of finding integer and rational points on certain curves.
Keywords
- Galois groups
- Quartic polynomials
- Generalized Laguerre polynomials
- Newton polygons
- Diophantine equations
2020 Mathematics Subject Classification
- 11R32
- 11C08
- 33C45
References
- Banerjee, P. (2014). On Galois groups of Laguerre polynomials whose discriminants are squares. Journal of Number Theory, 141, 36–58.
- Banerjee, P. (2018). On Galois groups of a one-parameter orthogonal family of polynomials. Acta Arithmetica, 190, 1–36.
- Banerjee, P., Filaseta, M., Finch, C., & Leidy, J. (2013). On classifying Laguerre
polynomials which have Galois group the alternating group. Journal de Theorie des Nombres de Bordeaux, 25, 1–30. - Conrad, K. (2020). Galois groups of cubics and quartics (not in characteristic 2). Available online at https://kconrad.math.uconn.edu/blurbs/galoistheory/
cubicquartic.pdf. - Dumas, D. (1906). Sur quelques cas d’irreductibilite des polynomes a coefficients rationnels. Journal de Mathematiques Pures et Appliquees, 2, 191–258.
- Hajir, F. (2009). Algebraic properties of a family of generalized Laguerre polynomials. Canadian Journal of Mathematics, 61, 583–603.
- Hajir, F., & Wong, S. (2006). Specializations of one parameter family of polynomials. Annales de l’Institut Fourier (Grenoble), 56, 1127–1163.
- Kappe, L. C. & Warren, B. (1989). An elementary test for the Galois group of a quartic polynomial. American Mathematical Monthly, 96, 133–137.
- Schur, I. (1929). Einege Satze uber Primzahlen mit Anwendugen auf
Irreduzibilitatsfragen, I. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-Mathematische Klasse, 4, 125–136. - Schur, I. (1929). Gleichungen ohne Affekt. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-Mathematische Klasse, 14, 443–449.
- Schur, I. (1931). Affectlose Gleichungen in der Theorie der Laguerreschen und
Hermiteschen Polynome. Journal fur die reine und angewandte Mathematik, 165, 52–58.
Related papers
Cite this paper
Banerjee, P., & Bera, R. (2021). Classifying Galois groups of an orthogonal family of quartic polynomials. Notes on Number Theory and Discrete Mathematics, 27(2), 172-190, DOI: 10.7546/nntdm.2021.27.2.172-190.
