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Abstract: We consider the quartic generalized Laguerre polynomials L(α)
4 (x) for α ∈ Q. It

is shown that except Z/4Z, every transitive subgroup of S4 appears as the Galois group of
L
(α)
4 (x) for infinitely many α ∈ Q. A precise characterization of α ∈ Q is obtained for each

of these occurrences. Our methods involve the standard use of resolvent cubics and the theory of
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problem of finding integer and rational points on certain curves.
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1 Introduction

Computing Galois groups of polynomials with rational coefficients is a classical problem in
algebra. By Galois group of a polynomial f(x) ∈ Q[x], we refer to the Galois group of the
splitting field of f(x) over the rationals. We will denote the Galois group of f(x) by Gal(f).
Broadly speaking, there are no known algorithms to compute the Galois group of a given but
arbitrary polynomial. Among exceptions are polynomials of degree ≤ 4. In theory, given a
polynomial in Q[x] of degree≤ 4, it is possible to determine its Galois group (for example, many
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mathematics software systems can do this job). But it is not always an entirely trivial task to
compute the Galois groups of a family of polynomials of a fixed degree ≤ 4. In this article, we
consider generalized Laguerre polynomials L(α)

n (x) for n ≤ 4 and α ∈ Q. These are defined as

L(α)
n (x) = (−1)n

n∑
j=0

(−1)j
(
n+ α

n− j

)
xj

j!
.

This family of polynomials are widely studied in mathematical physics and quantum mechanics.
An interest in the algebraic aspects of these polynomials was initiated by Schur [9–11] who made
use of these polynomials to resolve the inverse Galois problem for the symmetric and alternating
group. His results are summarized below.

• L(0)
n (x) has Galois group Sn for each n.

• L(1)
n (x) has Galois group Sn for each even n with n+ 1 not a square.

• L(1)
n (x) has Galois group An for each odd n and each even n with n+ 1 a square.

• L(−n−1)
n (x) has Galois group Sn for each n 6≡ 0 (mod 4).

• L(−n−1)
n (x) has Galois group An for each n ≡ 0 (mod 4).

Since the work of Schur, the algebraic aspects of generalized Laguerre polynomials have received
much attention in the recent years. We refer the interested reader to [1] and the references therein.

The case n = 4, in some sense, is more interesting than others. In [7], Hajir and Wong showed
that if n ≥ 5 is fixed, then the Galois group of L(α)

n (x) contains An, the alternating group on n
letters, for all but finitely many α ∈ Q (depending on n). On the other hand, Hajir [6] exhibits
infinitely many α ∈ Q such that L(α)

4 (x) has the associated Galois group the Dihedral group D4

(hence, the Galois group does not contain A4). Our main motivation was to investigate whether
there are other transitive subgroups of S4, the symmetric group on 4 letters, which appear as the
Galois group of L(α)

4 (x) infinitely often. It turns out that such examples indeed exist and are
plentiful.

This article, in a way, complements the results of [1, 2, 6]. In [1], the Galois properties of
L
(α)
n (x) for n ≤ 4 and α ∈ Z are addressed. Obviously, one would want to extend these results

to α ∈ Q\Z. In [2], the first author obtained precise descriptions of the pairs (n, α) with n ≤ 4

and α ∈ Q\Z such that the discriminant of L(α)
n (x) is the square of a nonzero rational number.

In [6], Hajir established the irreducibility of L(α)
4 (x) for all α ∈ Q\{−1, 23}. Thus, one is

naturally intrigued to know whether Gal(L
(α)
4 ) is Klein’s four group V4 or A4 in the case that the

discrimiant of L(α)
4 (x) is a nonzero rational square.

For n ≤ 3, the situation is not as exciting. We briefly discuss them here, omitting some of the
details. The polynomial L(α)

2 (x) = 2!L
(α)
2 (x) is given by

L(α)
2 (x) = x2 − 2(α + 2)x+ (α + 2)(α + 1).

Its discriminant is 4(α+ 2). Thus, the Galois group of L(α)
2 (x) is trivial if and only if α+ 2 is the

square of a rational number. Otherwise, it is Z/2Z.
Now consider the case that n = 3. It is well known that the Galois group of

a cubic polynomial in Q[x] contains A3 if and only if the polynomial is irreducible.
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Irreducibility here, and throughout, refers to the irreducibility over the rationals. The polynomial
L(α)

3 (x) = −3!L
(α)
3 (x) is given by

L(α)
3 (x) = x3 − 3(α + 3)x2 + 3(α + 3)(α + 2)x− (α + 3)(α + 2)(α + 1).

After killing the trace term by considering instead the polynomial g(x) = L(α)
3 (x + α + 3), we

have g(x) = x3 − 3(α+ 3)x− 2(α+ 3). It is easy to see that g(x) is reducible over the rationals
if and only if

α =
γ3 − 9γ − 6

3γ + 2
, γ ∈ Q\{−2/3}. (1)

Thus, there are essentially a couple of things to address here. First, if α is not in the form
(1), then is it possible to precisely describe the instances where L(α)

3 (x) has the associated Galois
group A3 or S3. Second, in the case that α satisfy (1), under what circumstances does L(α)

3 (x)

split completely over the rationals. That is, for which α satisfying (1), is Gal(L(α)
3 ) the trivial

group?
In order to answer the first question, we need precise information on whether the discriminant

Discr(L(α)
3 ) of L(α)

3 (x) is a nonzero rational square. Let us denote by � the square of an
unspecified nonzero rational number. The cases where Discr(L(α)

n ) = � for n ≤ 5 and α ∈ Z
has already been studied in [1]. The main result in [1] states that if n ≤ 5, α ∈ Z and
Discr(L(α)

n ) = �, then Gal(L(α)
n ) = An unless (n, α) ∈ {(4,−1), (4, 23)}. Furthermore,

Gal(L(−1)
4 ) = A3 = Gal(L(23)

4 ). A precise description of n ≤ 5 and α ∈ Z for which
Discr(L(α)

n ) = � was obtained in [3].
Thus, in this article, we will be interested in the cases that α ∈ Q\Z whenever

Discr(L(α)
n ) = �. Using a formula of Schur [11] for Discr(L(α)

n ), the first author [2] has described
the instances where Discr(L(α)

n ) = � for n ≤ 5 and α ∈ Q\Z. It follows from [2] that
Discr(L(α)

3 ) = � if and only if α satisfies one of following 2 conditions. We label this list as
B3. The letters u and v below, represent a pair of relatively prime integers.

(i) α = (3u2 − 2v2)/v2 where v 6≡ 0 (mod 3) and v ≥ 2,

(ii) α = (u2 − 6v2)/3v2 where u 6≡ 0 (mod 3).

Thus, Gal(L(α)
3 ) = A3 for all α satisfying (i) or (ii) of B3 above, as long as α is not of the form

(1). In fact, it is possible to precisely describe such α. For example, suppose that α satisfies both
(i) of B3 and (1). Writing u/v = β, we find that (X, Y ) = (γ, β) is a rational point on the curve

Y 2/3− 2 = X3/(3X + 2)− 3; X 6= −2/3. (2)

Rewriting (2), we have

Y 2 =
3(X + 1)2(X − 2)

3X + 2
. (3)

Since, only α ∈ Q/Z are being considered here, we may discard the solution (X, Y ) = (−1, 0).
Thus, (3) can be expressed as

3X − 6

3X + 2
=

Y 2

(X + 1)2
. (4)

Set Y/(X + 1) = T . Since T = ±1 do not yield any admissible solution of (4), we may suppose
that T 2 6= 1. We further restrict ourselves to the nonzero values of T as β 6= 0. Solving for X in
(4) in terms of T , we obtain
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X =
2(3 + T 2)

3(1− T 2)
.

Thus, the curve (2) is parametrized by T as

X =
2(3 + T 2)

3(1− T 2)
, Y = T (X + 1) =

T (9− T 2)

3(1− T 2)
.

Now, substituting γ in (1) by the value of X obtained above, we get that

α =
T 6 − 72T 4 + 189T 2 − 54

27(T 4 − 2T 2 + 1)
; T ∈ Q/{0,±1}.

Indeed, for α as above, a quick verification with Sage (mathematics software system) yields that
the polynomial L(α)

3 (x+ α + 3) factors over Q as

(27(T 2 − 1)2)−1((3T − 1)x− T 2 − 3)((3T + 1)x+ 3T 2 + 1)(3(T 2 − 1)x+ 2T 2 + 6).

That is, L(α)
3 (x) factors completely into linear factors, and hence, has the trivial Galois group.

Thus, setting T = a/b where a and b are mutually coprime integers, we find that L(α)
3 (x) factors

into linear factors if and only if

α =
a6 − 72a4b2 + 189a2b4 − 54b6

27b2(a2 − b2)2
; a, b ∈ Z\{0}, gcd(a, b) = 1.

After comparing with (i) in B3, we deduce that

3v2 = 27λ2b2(a2 − b2)2 and u2 − 6v2 = λ2(a6 − 72a4b2 + 189a2b4 − 54b6),

where λ ∈ Q is such that the values of the integers u and v thus obtained are relatively prime.
Solving for u and v above, we obtain

u = ±aλ(a2 − 9b2) and v = ±3λb(a2 − b2).

Since gcd(u, v) = 1, we deduce that λ is of the form 1/µ where µ ∈ Z\{0}. Note that, for
relatively prime integers a and b we have

gcd(a, a2 − b2) = gcd(b, a2 − 9b2) = gcd(a, b) = 1,

and

gcd(a2 − b2, a2 − 9b2) =

{
1 if a 6≡ b (mod 2),

8 if a ≡ b (mod 2).

Thus, if a and b have the same parity, then µ ≡ 0 (mod 8), and µ is odd otherwise. Also, if 3 | a,
then we must have that µ ≡ 0 (mod 3). For relatively prime integers a and b, define

µ(a, b) =


1 if a 6≡ b (mod 2), 3 - a,
3 if a 6≡ b (mod 2), 3 | a,
8 if a ≡ b (mod 2), 3 - a,
24 if a ≡ b (mod 2), 3 | a.

Considering various possibilities depending on the parities of a and b and whether 3 | a or not,
we obtain that Gal(L(α)

3 ) = A3 as long as α satisfies (i) of B3 where

(u, v) /∈
{
±a(a2 − 9b2)

µ(a, b)
,
±3b(a2 − b2)

µ(a, b)
: a, b ∈ Z, gcd(a, b) = 1

}
.
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In the event that (3, α) satisfies (ii) in our list B3, we find that α = 3β2 − 2, where β is as
defined in the preceding case. Working in a similar manner as in the previous case, we deduce
that a reducible L(α)

3 (x) in this case, with ∆(3, α) = �, corresponds to a pair of integral points
(X,±Y ) on the curve

3Y 2 − 2 = X3/(3X + 2)− 3. (5)

Rewriting (5), we have

Y 2 =
(X + 1)2(X − 2)

3(3X + 2)
; x 6= −2/3.

As before, we set T = Y/(X + 1) and obtain X = (6T 2 + 2)/(1 − 9T 2). Here, we suppose, as
we may, that T /∈ {0,±1/3} (T = 0 corresponds to α = −2, an integer, and, T = ±1/3 do not
yield a solution of (5)). Thus, in this case, we find that

α =
27T 6 − 216T 4 + 63T 2 − 2

81T 4 − 18T 2 + 1
; T ∈ Q/{0,±1/3}.

We verified (using sage) that L(α)
3 (x+ α + 3) factors as

(9T 2 − 1)−2((3T − 1)x− 3T 2 − 1)((3T + 1)x+ 3T 2 + 1)((9T 2 − 1)x+ 6T 2 + 2).

Thus, by setting T = a/b where a and b are relatively prime integers, we have

α =
27a6 − 216a4b2 + 63a2b4 − 2b6

b2(9a2 − b2)2
; a, b ∈ Z\{0}, gcd(a, b) = 1.

After comparing and solving for u and v, we obtain

u = ±3λb(a2 − b2) and v = ±aλ(9a2 − b2).

Now, working similarly as in the preceding case, we get that Gal(L(α)
3 ) = A3 as long as α satisfies

(ii) of B3, provided

(u, v) /∈
{
±3b(a2 − b2)

µ(a, b)
,
±a(a2 − 9b2)

µ(a, b)
: a, b ∈ Z, gcd(a, b) = 1

}
.

It is clear that if α does not satisfy (i) or (ii) of B3 and is not in the form (1), then the Galois group
of L(α)

3 (x) is S3.
Now we turn to the second question, namely, classify α ∈ Q for which L(α)

3 (x) splits
completely over the rationals. In this case, α satisfies (1). One readily checks that

L(α)
3 (x+ α + 3) = (x− γ)(x2 + γx+ 2γ2/(3γ + 2)).

Thus, L(α)
3 (x) splits completely over the rationals if and only if the discriminant of the quadratic

polynomial appearing in the last display above is a rational square. That is, L(α)
3 (x) splits

completely over the rationals if and only if

γ2 − 8γ2/(3γ + 2) = �.

After simplifying, we find that γ − 2/3 is the abscissa of a Q-rational point on the hyperbola

x2 − y2 = 16/9.

Using the Q-rational point (4/3, 0) on the hyperbola, one can find all other Q-rational points on
this curve by the standard chord-slope parametrization. Thus, γ can be given as

γ =
4

3
+

2

3
= 2 or γ =

−4(1 +m2)

3(1−m2)
+

2

3
=
−2(1 + 3m2)

3(1−m2)
, m 6= ±1.

This settles the case that n = 3.
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Before proceeding further, we would like to note that for every integer n ≥ 1 and
−n ≤ α < 0, there is a trivial factorization of L(α)

n (x). Namely, for any such α, we have
(see (1.2) in [6])

L(α)
n (x) = x−αL(−α)

n+α (x). (6)

In order to streamline our presentation, we treat these cases separately. For each integer n ≥ 1,
we let En = Z ∩ [−n, 0). Thus, we have E4 = {−1,−2,−3,−4}. Furthermore, from (6), it
follows that for α ∈ En, the polynomials L(α)

n (x) and L(−α)
n+α (x), have the same Galois group.

Thus, Gal(L(−1)
4 ) = Gal(L(1)

3 ) = A3 (by [11]). It is easy to check that the Galois groups in the
remaining cases are trivial. Henceforth, we will only consider α ∈ Q\E4.

The case that n = 4 and α ∈ Q\E4 entails a much finer analysis. The polynomial
L(α)

4 (x) = 4!L
(α)
4 (x) is given by

L(α)
4 (x) = x4 − 4(α + 4)x3 + 6(α + 4)(α + 3)x2

− 4(α + 4)(α + 3)(α + 2)x+ (α + 4)(α + 3)(α + 2)(α + 1).

Hajir [6] has established that besides the trivial factorization (6), L(α)
4 (x) is reducible if and only

if α = 23. One easily checks (we used Sage) that Gal(L(23)
4 ) = A3. By abuse of notation, we

shall denote E4 ∪ {23} by E4.
We split our analysis into two cases, depending on whether the discriminant of L(α)

4 (x) is
the square of a rational number or not. As stated earlier, the Galois groups in the cases, where
Discr(L(α)

4 ) = � and α ∈ Z, are already addressed in [1]. Therefore, we will only consider
α ∈ Q\Z whenever Discr(L(α)

4 ) = �. For α ∈ Q\Z, we have from [2] that Discr(L(α)
4 ) = � if

and only if α satisfies one of the following 4 conditions. We label this list as B4. Below, u and v
represent a pair of relatively prime integers and k is an integer.

(i) α = −2(u2 − 6v2)/(u2 − 3v2) where u 6≡ v (mod 2), 3 - u and u+ v
√

3 6= ±(2 +
√

3)k

(ii) α = −2(2u2 − 3v2)/(u2 − 3v2) where u 6≡ v (mod 2), 3 - u and u+ v
√

3 6= ±(2 +
√

3)k

(iii) α = −(u2 + v2 + 10uv)/(u2 + v2 + 4uv) where u 6≡ v (mod 2), u 6≡ v (mod 3) and
u+ 2v + v

√
3 6= ±(2 +

√
3)k

(iv) α = −(5u2 + 5v2 + 14uv)/(u2 + v2 + 4uv) where u 6≡ v (mod 2), u 6≡ v (mod 3) and
u+ 2v + v

√
3 6= ±(2 +

√
3)k

Without loss of any generality, we can assume that the integers u and v above are positive, and
as such, we do so throughout. A Galois group of L(α)

4 (x), different from S4, A4 and D4, arises for
α satisfying (i) or (ii) of B4 and some additional conditions. These are classified in the following.

Theorem 1.1. Let α ∈ Q\E4 satisfy one of (i)–(iv) in B4. Then the Galois group associated with
L(α)

4 (x) is the Klein four group V4 if and only if one of the following holds.

(a) α satisfies (i) or (ii) in B4, and additionally, there are integers a and b with gcd(a, b) ≤ 2

and a ≡ b (mod 2) such that

u = ±a(a2 − 9b2)/8 and v = ±3b(a2 − b2)/8.
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(b) α satisfies (iii) or (iv) in B4, and additionally, there are integers a and b with gcd(a, b) ≤ 2

and a ≡ b (mod 2) such that

u =
±3b(a2 − b2 ± a(a2 − 9b2))

8
and v =

±3b(a2 − b2 ∓ a(a2 − 9b2))

8
.

The Galois group is A4 otherwise.

If α is not as in (i)–(iv) of B4, then we have the following.

Theorem 1.2. Suppose α ∈ Q\E4 does not satisfy (i)–(iv) of B4. Let A be the set of elements of
the form

−3λ3 + 18ελ2 − 64ε

λ3 + 6ελ2 − 16ε
, λ 6= −2ε, ε ∈ {±1}, λ ∈ Q.

Then for α ∈ A, the Galois group of L(α)
4 (x) is D4. The Galois group is S4 if α /∈ A.

In the proofs of Theorems 1.1 and 1.2, we make use of the resolvent cubics. It is well known
that the Galois group of an irreducible quartic polynomial contains A4 if and only if its resolvent
cubic is irreducible. As stated before, Hajir [6] has established that L(α)

4 (x) is irreducible for all
α ∈ Q\E4. Thus, our work here boils down to studying the factorization of the resolvent cubic of
L(α)

4 (x). This is done by parametrizing the factors of the resolvent cubic by integer (or rational)
points on certain curves. The factorization problem then reduces to a Diophantine problem.

In order to parametrize the factors of the resolvent cubic of L(α)
4 (x) in Theorem 1.1, we will

make use of the theory of Newton polygons which we briefly describe here.
Let p be a prime, and s and r be integers relatively prime to p. If m is a nonzero number

and a is an integer such that m = pa s
r
, we define ν(m) = νp(m) = a. By convention, we take

ν(0) = +∞. Consider f(x) =
∑n

j=0 ajx
j ∈ Q[x] with ana0 6= 0, and let p be a prime. Let S be

the set of points in the extended plane given by

S = {(0, ν(an)), (1, ν(an−1)), (2, ν(an−2)), · · · , (n− 1, ν(a1)), (n, ν(a0))}.

Consider the lower edges along the convex hull of these points. The left-most endpoint is
(0, ν(an)), and the right-most endpoint is (n, ν(a0)). The endpoints of all the edges belong to
S, and the slopes of the edges increase from left to right. The polygonal path formed by these
edges is called the Newton polygon of f(x) with respect to the prime p, and we will denote
it by NPp(f). The celebrated theorem of Dumas [5] provides an effective tool to study the
irreducibility aspects of polynomials over the rationals.

Theorem 1.3 (Dumas). Let p be a prime and h1(x), h2(x) ∈ Z[x] with h1(0)h2(0) 6= 0. Also,
let a 6= 0 be the leading coefficient of h1(x)h2(x) with νp(a) = k. Then the edges of the
Newton polygon of h1(x)h2(x) with respect to p can be formed by constructing a polygonal path
beginning with (0, k) and using translates of edges of Newton polygons of h1(x) and h2(x) with
respect to p (using exactly one translate for each edge). Necessarily, the edges are translated in
such a way as to form a polygonal path with slopes of edges increasing from left to right.

Thus, if a polynomial f(x) with integer coefficients factors in Z[x] into irreducible polynomials
of degrees≥ 1, then Theorem 1.3 tells us that for any prime p and a factor h(x) ∈ Z[x] of f(x), a
translate of every edge of NPp(h) lies on some edge of NPp(f). Thus, in particular, if for some
prime p, there are no lattice points on NPp(f), other than endpoints, then f(x) is irreducible. We
will often exploit this fact in our proof.
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2 The proofs of Theorems 1.1 and 1.2

We begin with the proof of Theorem 1.1. Thus, we are interested in computing the Galois group
of

f(x) = L(α)
4 (x) = x4 − 4(α + 4)x3 + 6(α + 4)(α + 3)x2

− 4(α + 4)(α + 3)(α + 2)x

+ (α + 4)(α + 3)(α + 2)(α + 1),

where α ∈ Q\Z and satisfies Discr(L(α)
4 ) = �. Recall that L(α)

4 (x) is irreducible for all α under
consideration. By the discriminant formula of Schur [11], we have that

Discr(L(α)
4 ) =

4∏
j=2

jj(α + j)j−1.

Thus, Discr(L(α)
4 ) = � if and only if

3(α + 2)(α + 4) = �.

We set α = s/t and rewrite the last equation as

(s+ 2t)(s+ 4t) = 3m2, m ∈ Z\{0}. (7)

Since gcd(s, t) = 1, we deduce that gcd(s+2t, s+4t) = 2 if s is even, and gcd(s+2t, s+4t) = 1,
otherwise. After considering various possibilities, we deduce from (7) and the fundamental
theorem of arithmetic that there are relatively prime integers y1 and y2 such that the pair
(s+ 2t, s+ 4t) has one of the following representations. If s is odd, then

(s+ 2t, s+ 4t) ∈ {(3y21, y22), (y21, 3y
2
2), (−3y21,−y22), (−y21,−3y22)};

y1 ≡ y2 ≡ 1 (mod 2),

and for even s, we have

(s+ 2t, s+ 4t) ∈ {(6y21, 2y22), (2y21, 6y
2
2), (−6y21,−2y22), (−2y21,−6y22)};

y1 6≡ y2 (mod 2).

For convenience, we will work with the translated polynomial g(x) = L(α)
4 (x+ α+ 4). Thus

g(x) = x4 − 6(α + 4)x2 − 8(α + 4)x+ 3(α + 4)(α + 2).

For a monic quartic polynomial h(x) = x4 + ax3 + bx2 + cx+ d, having roots t1, t2, t3 and t4, its
resolvent cubicRh(x) is defined as the cubic whose roots are t1t2+t3t4, t1t3+t2t4 and t1t4+t2t3.
It can be verified (see [8] for instance) that h(x) and Rh(x) have the same discriminant and that
for the given quartic h(x), Rh(x) can be expressed as

Rh(x) = x3 − bx2 + (ac− 4d)x− a2d− 4bd+ c2.

The factorization of resolvent cubics of irreducible quartics completely determine their Galois
groups. We refer to the following result from [8].
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Theorem 2.1 (Kappe–Warren). Let F (x) = x4 + ax3 + bx2 + cx + d be an irreducible quartic
polynomial in Q[x], and let RF (x) be its resolvent cubic. Let K denote the splitting field of
RF (x) over Q. Then, we have the following.

(i) Gal(F ) = S4 if and only if RF (x) is irreducible and Discr(F ) /∈ Q2.

(ii) Gal(F ) = A4 if and only if RF (x) is irreducible and Discr(F ) ∈ Q2.

(iii) Gal(F ) = V4 if and only if RF (x) splits into product of linear factors over Q.

(iv) Gal(F ) = Z/4Z if and only if RF (x) has exactly one root A in Q and G(x) = (x2−Ax+

d)(x2 + ax+ b− A) splits over K.

(v) Gal(F ) = D4 if and only if RF (x) has exactly one root A in Q and G(x) (defined in (iv))
does not split over K.

We have

Rg(x) = x3 + 6(α + 4)x2 − 12(α + 4)(α + 2)x− 72(α + 4)2(α + 2)− 64(α + 4)2.

Instead of Rg(x), we will work with the cubic R1(x) = Rg(2x− 2α− 8)/8, which in our case is
given by

R1(x) = x3 − 6(α + 4)(α + 3)x− 4(α + 4)2(α + 3).

Writing α = s/t, and setting R2(x) = t3R1(x/t), we have

R2(x) = x3 − 6(s+ 3t)(s+ 4t)x− 4(s+ 3t)(s+ 4t)2.

Observe that, if p 6= 2 is any prime divisor of s + 3t, then the Newton polygon Np(R2) has only
one edge, that joining the terminal points (0, 0) and (3, νp(s+3t)). By appealing to Theorem 1.3,
we deduce that if R2(x) is reducible over the rationals, then

νp(s+ 3t) ≡ 0 (mod 3) for all p|(s+ 3t), p 6= 2.

Thus, in order for R2(x) to be reducible, s + 3t is in one of the forms in the set {z31 , 2z31 , 4z31}
for some z1 ∈ Z. Therefore, if R2(x) is reducible over the rationals and Discr(L(α)

4 ) is a
nonzero rational square, then from the description of s + 2t, s + 3t and s + 4t, and the identity
(s+ 2t) + (s+ 4t) = 2(s+ 3t), we deduce that

(Z, Y1, Y2) ∈ {(z1, y1, y2), (z1, y2, y1), (−z1, y1, y2), (−z1, y2, y1)}

is an integer solution of

2`Z3 = Y 2
1 + 3Y 2

2 ; ` ∈ {1, 2, 4} if s ≡ 1 (mod 2), (8)

or
`Z3 = Y 2

1 + 3Y 2
2 ; ` ∈ {1, 2, 4} if s ≡ 0 (mod 2). (9)

Thus, we will be interested in finding integral points on the curves given by (8) and (9).
Recall that for odd s, we have Y1 ≡ Y2 ≡ 1 (mod 2) so that, the right hand side of (8) is

congruent to 4 (mod 8). Thus, for (8) to have an integral solution, Z must be odd, and hence, it
follows that ` = 2. Accordingly, we rewrite (8) as

4Z3 = Y 2
1 + 3Y 2

2 ; Z ≡ Y1 ≡ Y2 ≡ 1 (mod 2). (10)
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If s is even, then from gcd(s, t) = 1, we find that s + 3t is odd, and hence, Z ≡ 1 (mod 2).
Recall that Y1 6≡ Y2 (mod 2) in this case. As such, it follows that ` = 1. Thus (9) can be
expressed as

Z3 = Y 2
1 + 3Y 2

2 ; Z ≡ 1 (mod 2), Y1 6≡ Y2 (mod 2). (11)

We first show that solutions of (10) do not yield any reducibleR2(x). Observe that, corresponding
to integral solutions of (10), we have (s + 3t, s + 4t) = (2εz31 , εmy

2
2) where ε ∈ {1,−1},

m ∈ {1, 3} and z1, y2 are odd integers. Instead of R2(x), we consider the polynomial
R3(x) = R2(z1y2x)/z31y

3
2 . Thus,

R3(x) = x3 − 12mz1x− 8εm2y2.

Since m, z1 and y2 are odd, the Newton polygon NP2(R3) of R3(x) with respect to 2, has just
one edge, that joining (0, 0) and (3, 3). Now, if R3(x) is reducible, then being a monic cubic with
integer coefficients, it has an integer root a. From Theorem 1.3, we find that NP2(x− a) has just
one edge, joining (0, 0) and (1, 1). This, in other words, means that 2 exactly divides the integer
a, that is, a = 2a1 for some odd integer a1. Now, from the relation R3(2a1)/8 = 0, we find that

a31 − 3mz1a1 − εm2y2 = 0.

But this is a contradiction as an odd number of terms above are odd. This proves our claim.
Corresponding to integral solutions of (11), we have (s+ 3t, s+ 4t) = (εz31 , 2εmy

2
2) for some

ε ∈ {1,−1}, m ∈ {1, 3}, where z1 is an odd integer. Similarly to the previous case, we consider
the reducibility of the polynomial R3(x) = R2(z1y2x)/z31y

3
2 which, in this case, is given by

R3(x) = x3 − 12mz1x− 16εm2y2. (12)

Below, we show that every integral solution of (11) produces a corresponding reducible
R3(x) given by (12). In fact, we will find out that R3(x) splits completely over Q in this case.
Consequently, appealing to Theorem 2.1, we could then deduce that L(α)

4 (x) has V4 as its Galois
group.

Let us set δ =
√
−3. Then from (11), we have the following factorization in the ring of

integers R = Z + Z
[
(1 + δ)/2

]
of Q(δ).

Z3 = (Y1 + δY2)(Y1 − δY2).

We note that R is a principal ideal domain. Let d = gcd(Y1 + δY2, Y1 − δY2). Let p be a prime
divisor (possibly, p = 1) of the norm N(d) = NQ(

√
−3)/Q(d). Since N(d) also divides Z3, and Z

is odd, we may as well assume that p is odd. Observe that d divides Y1 + δY2 + Y1 − δY2 = 2Y1.
Since p is odd, we deduce that p divides Y1. Thus p|Z3 and p|Y 2

1 . Observe that Z3 = ε(s + 3t)

and Y 2
1 = ε(s+ βt) where β = 2 or β = 4, and ε ∈ {1,−1}.

Hence gcd(Z3, Y 2
1 ) = gcd(s + βt, s + 3t) = gcd(s, t) = 1. It follows that p = 1, and hence,

Y1 + δY2 and Y1 − δY2 are relatively prime in R. Since R is a unique factorization domain, we
conclude that there are integers a and b of the same parity, and a unit γ ∈ R such that

Y1 + θδY2 = γ

(
a+ θδb

2

)3

, θ ∈ {±1}, Z =
a2 + 3b2

4
; Z ≡ 1 (mod 2). (13)

Note that gcd(a, b) ≤ 2, else, Y1 + δY2 and Y1 − δY2 will have a nontrivial common factor. In
particular, if a and b are even, then a ≡ b+ 2 (mod 4).
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We recall that the only units in R are {±1,±(1 ± δ)/2}. Since, we have not imposed any
restriction on the signs of a and b, it suffices to consider the case that γ ∈ {1, (1 + ηδ)/2},
η ∈ {−1, 1} and θ = 1. We show that for γ = (1 + ηδ)/2, the value of Y1, obtained in (13), is
either not an integer or do not yield admissible values for Z. Hence, for γ = (1 + δ)/2, (13) does
not give any integral solutions to (11). After solving for Y1 in (13) with γ = (1 + ηδ)/2, we have

Y1 =
a3 − 9ab2 − 9ηa2b+ 9ηb3

16
.

Let us set Y1(a, b) = a3 − 9ab2 − 9a2b + 9b3. Thus, Y1(a, b) ≡ 0 (mod 16) for Y1 to be
an integer. First, assume that a and b are odd. Since odd integer squares are congruent to 1

or 9 (mod 16), we have that either a2 ≡ b2 (mod 16) or, a2 ≡ 9b2 (mod 16) and 9a2 ≡ b2

(mod 16). In the former case, Y1(a, b) ≡ −8a3 (mod 16), and as such, Y1 is not an integer in
this case. In the latter case, Y1(a, b) ≡ ±8ηb3 (mod 16). Therefore, Y1 is not an integer in this
case either. Now suppose that a and b are even integers. Note that the squares of even integers are
congruent to 0 or 4 (mod 16). If a2 ≡ b2 (mod 16), then 4Z = a2 + 3b2 ≡ 4a2 ≡ 0 (mod 16).

But the last relation contradicts the fact that Z is an odd integer (see (13) above). In the remaining
case, either 4a2 ≡ b2 (mod 16) or a2 ≡ 4b2 (mod 16). In the case that 4a2 ≡ b2 (mod 16),
we have a ≡ 2 (mod 4) and b ≡ 0 (mod 4). Consequently, Y1(a, b) ≡ a3 ≡ 8 (mod 16).

But then Y1 = Y1(a, b)/16 fails to be an integer. We get a similar contradiction in the case that
a2 ≡ 4b2 (mod 16). Hence, we can take γ = 1 in (13). After solving for Y1 and Y2, we see that
the complete set of solutions to (10) is given by

Y1 =
a(a2 − 9b2)

8
, Y2 =

3b(a2 − b2)
8

, Z =
a2 + 3b2

4
; Z ≡ 1 (mod 2),

where a ≡ b (mod 2) with gcd(a, b) ≤ 2. Thus, for even s, we have

s+ 4t ∈
{
εa2(a2 − 9b2)2

32
,
27εb2(a2 − b2)2

32

}
, (14)

and

s+ 3t =
ε(a2 + 3b2)3

64
, (15)

where ε ∈ {−1, 1}. Now, plugging in (z1, y2) = ((a2 + 3b2)/4, a(a2 − 9b2)/8) and
(z1, y2) = ((a2 + 3b2)/4, 3b(a2 − b2)/8) in (12), we find that

R3(x) =

{
x3 − 3(a2 + 3b2)x− 2εa(a2 − 9b2) if m = 1,

x3 − 9(a2 + 3b2)x− 54εb(a2 − b2) if m = 3.

One verifies that for m = 1,

R3(x) = (x− 2aε)(x+ aε+ 3b)(x+ aε− 3b),

and if m = 3, then

R3(x) = (x+ 6bε)(x− 3bε+ 3a)(x− 3bε− 3a).

This finishes the proof of our assertion. Solving for s and t in (14) and (15), we have

t = ±ε(a6 − 45a4b2 + 135a2b4 − 27b6)/64. (16)
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Corresponding to the positive sign above, we have

s = −2ε(a6 − 72a4b2 + 189a2b4 − 54b6)/64, (17)

and for the negative sign,

s = −2ε(2a6 − 63a4b2 + 216a2b4 − 27b6)/64. (18)

Here the integer parameters a and b satisfy

gcd(a, b) ≤ 2; a ≡ b (mod 2).

We further observe that, if 3 | a, then gcd(s, t) ≥ 3. Thus, we assume that 3 - a. The two sets of
values of α obtained from (16), (17) and (18) are respectively,

α =
−2(a6 − 72a4b2 + 189a2b4 − 54b6)

a6 − 45a4b2 + 135a2b4 − 27b6
(19)

and
−2(2a6 − 63a4b2 + 216a2b4 − 27b6)

a6 − 45a4b2 + 135a2b4 − 27b6
. (20)

We will compare these with α ∈ B4 and establish that there are admissible solutions integers u
and v in the following cases:

• α satisfies (i) of B4 and (19),

• α satisfies (ii) of B4 and (20),

• α satisfies (iii) of B4 and (20),

• α satisfies (iv) of B4 and (19).

There are no admissible solutions in the remaining cases. We begin with the case that α satisfies
(i) of B4 and (19). In this case,

u2 − 6v2

u2 − 3v2
=
a6 − 72a4b2 + 189a2b4 − 54b6

a6 − 45a4b2 + 135a2b4 − 27b6
.

Comparing the numerators and the denominators, we have

u2 − 6v2 = λ(a6 − 72a4b2 + 189a2b4 − 54b6)

and that
u2 − 3v2 = λ(a6 − 45a4b2 + 135a2b4 − 27b6)

for some nonzero rational λ. Solving for u and v, we get

u = ±
√
λa(a2 − 9b2) and v = ±3

√
λb(a2 − b2).

Recall that a and b have the same parity with gcd(a, b) ≤ 2. Thus, if a and b are odd, then
gcd(a, b) = 1, and

a2 − b2 ≡ a2 − 9b2 (mod 8).

Since the odd squares (mod 16) are 1 or 9, we deduce that one among a2 − b2 and a2 − 9b2 is
not divisible by 16. Since 3 - a and gcd(a, b) = 1, we deduce that

gcd(b(a2 − b2), a(a2 − 9b2)) = 8.
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Accordingly, we set
√
λ = 1/8. That is, we take λ = 1/64 in this case. Now consider the case

that a and b are even. In this case, gcd(a, b) = 2. Therefore, a2 − b2 6≡ 0 (mod 8). Nevertheless,

a2 − b2 ≡ a2 − 9b2 (mod 4).

Thus, gcd(b(a2 − b2), a(a2 − 9b2)) = 8 in this case as well, and accordingly, we take λ = 1/64.
Now suppose α satisfies (ii) of B4 and (20). In this case, we have

2u2 − 3v2

u2 − 3v2
=

2a6 − 63a4b2 + 216a2b4 − 27b6

a6 − 45a4b2 + 135a2b4 − 27b6
.

Working similarly as before, we solve for u and v to get that

u = ±a(a2 − 9b2)/8 and v = ±3b(a2 − b2)/8.

Next, we consider the case that α satisfies (iii) of B4 and (20). In this case, we have

u2 + v2 + 10uv = 2λ(2a6 − 63a4b2 + 216a2b4 − 27b6)

and
u2 + v2 + 4uv = λ(a6 − 45a4b2 + 135a2b4 − 27b6),

where λ is a nonzero rational number. After subtracting and then dividing out by 3, we get that

2uv = λ(a6 − 27a4b2 + 99a2b4 − 97b6).

Subtracting 2uv from u2 + v2 + 4uv, we have

(u+ v)2 = −18λb2(a2 − b2)2.

Similarly, after subtracting 6uv from u2 + v2 + 4uv, we get

(u− v)2 = −2λb2(a2 − 9b2)2.

Thus,
u+ v = ±3

√
−2λ(a2 − b2) and u− v = ±

√
−2λ(a2 − 9b2).

The choice of λ ∈ Q\{0} must be such that gcd(u, v) = 1. Proceeding similarly as before, we
deduce that gcd(b(a2 − b2), a(a2 − 9b2)) = 8 in this case. Accordingly, we set

√
−2λ = 1/4.

That is λ = −1/32. Now, solving for u and v, we find that

u =
±3b(a2 − b2 ± a(a2 − 9b2))

8

and

v =
±3b(a2 − b2 ∓ a(a2 − 9b2))

8
.

Finally, in the case that α satisfies (iv) of B4 and (19), we get that

5u2 + 5v2 + 14uv = 2λ(a6 − 72a4b2 + 189a2b4 − 54b6)

and
u2 + v2 + 4uv = λ(a6 − 45a4b2 + 135a2b4 − 27b6).

From
6(u2 + v2 + 4uv)− (5u2 + 5v2 + 14uv) = u2 + v2 + 10uv,

we get that
u2 + v2 + 10uv = 2λ(2a6 − 63a4b2 + 216a2b4 − 27b6).
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Thus, this case coincides with the preceding one and, as such, one obtains the same set of
values for u and v as in the previous case. This settles the sufficiency of (a) and (b) in Theorem 1.1.

It remains to show that there are no admissible solutions in the remaining cases. We begin by
considering the case that α satisfies (i) of B4 and (20). In this case, we get that

u2 − 6v2

u2 − 3v2
=

2a6 − 63a4b2 + 216a2b4 − 27b6

a6 − 45a4b2 + 135a2b4 − 27b6
.

Comparing and solving for 3v2, we find that there is a nonzero rational number λ such that

3v2 = −λa2(a2 − 9b2)2.

Let λ = p/q where p and q are nonzero integers with gcd(p, q) = 1. Since 3 - a, we deduce from
above that 3|p. But then from

u2 − 6v2 = λ(2a6 − 63a4b2 + 216a2b4 − 27b6),

we get that 3|u (since 3 - q). But this contradicts (i) of B4. Next suppose that α satisfies (ii) of B4
and (19). In this case, we have

2u2 − 3v2

u2 − 3v2
=
a6 − 72a4b2 + 189a2b4 − 54b6

a6 − 45a4b2 + 135a2b4 − 27b6
.

Thus, there is a nonzero rational λ = p/q such that

2u2 − 3v2 = λ(a6 − 72a4b2 + 189a2b4 − 54b6)

and
u2 − 3v2 = λ(a6 − 45a4b2 + 135a2b4 − 27b6).

Solving, we have

u2 = −27λb2(a2 − b2)2 and 3v2 = −λa2(a2 − 9b2)2.

Once again, since 3 - a, we deduce from the last display that 3|p. Consequently, from the display
preceding the last display, we get that 27|u, a contradiction since 3 - u as per (ii), B4.

If α satisfies (iii) of B4 and (19), then proceeding as before we have

u2 + v2 + 10uv = 2λ(a6 − 72a4b2 + 189a2b4 − 54b6)

and
u2 + v2 + 4uv = λ(a6 − 45a4b2 + 135a2b4 − 27b6),

where λ = p/q is a nonzero rational number with gcd(p, q) = 1. Subtracting, we get

6uv = λ(a6 − 99a4b2 + 243a2b4 − 81b6).

Since 3 - a, we have that 3|p. Similarly, it also follows from the display preceding the last one
above that 3|(u2 + v2 + 4uv). Recall that u 6≡ v (mod 3) in (iii) of B4. But this implies that

0 ≡ u2 + v2 + 4uv ≡ u2 + v2 + uv ≡ 1 (mod 3),

a contradiction, and our assertion follows.
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Lastly, we consider the case that α satisfies (iv) of B4 and (20). In this case, we have

5u2 + 5v2 + 14uv = 2λ(2a6 − 63a4b2 + 216a2b4 − 27b6)

and
u2 + v2 + 4uv = λ(a6 − 45a4b2 + 135a2b4 − 27b6).

As noted before, we have from observing that

6(u2 + v2 + 4uv)− (5u2 + 5v2 + 14uv) = u2 + v2 + 10uv,

that
u2 + v2 + 10uv = 2λ(a6 − 72a4b2 + 189a2b4 − 54b6).

Thus, we are reduced to the preceding case. Hence, there are no admissible solutions in integers
u and v in this case. This concludes the proof of Theorem 1.1.

We now turn to the proof of Theorem 1.2. Thus, we assume for now that α ∈ Q\E4, and
that α does not satisfy (i)–(iv) in B4. In particular, Discr(L(α)

4 ) 6= �. According to Theorem 2.1,
the Galois group of L(α)

4 (x) is different from S4 if and only if the resolvent cubic of L(α)
4 (x) is

reducible. As before, we work with the shifted polynomial

g(x) = L(α)
4 (x+ α + 4) = x4 − 6(α + 4)x2 − 8(α + 4)x+ 3(α + 4)(α + 2),

and let

R1(x) = Rg(2x− 2α− 8)/8 = x3 − 6(α + 4)(α + 3)x− 4(α + 4)2(α + 3).

We assume that R1(x) is reducible over the rationals. Note that in the case under consideration,
R1(x) has exactly one root in Q. Else, if R1(x) has three roots in Q, then by (iii) of Theorem 2.1,

Gal(L(α)
4 ) = Gal(g) = V4.

Since V4 ⊂ A4, it will then follow that Discr(L(α)
4 ) = �, contrary to our assumption in the present

case.
Now, consider the polynomial

R1((α + 3)x)

(α + 3)3
= x3 − 6

(
α + 4

α + 3

)
x− 4

(
α + 4

α + 3

)2

.

Setting s = (α+4)/(α+3) in the last equation, we find that R1(x) is reducible over the rationals
for some α ∈ Q if and only if (x, s) is a Q-rational point on the curve r(x, s) = x3 − 6sx− 4s2.

Considering r(x, s) = 0 as a quadratic equation in s, we see that a reducibleR1(x) corresponds to
Q-rational points on the curve Discrs(r(x, s)) = 36x2 + 16x3 = �. It is now easy to see that the
Q-rational points on this curve correspond to the Q-rational points on the parabola y2 = 4x + 9.

The Q-rational points on this parabola can be parametrized as

x = t2 − 9/4, y = 2t, t ∈ Q.

Now, solving for s in r(x, s) = 0, we get that

s =
(−3± 2t)x

4
.

Putting x = t2 − 9/4 and simplifying, we get that
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s =
ε

4
(t2 − 9/4)(2t− 3ε) =

(2t+ 3)(2t− 3)2/16 if ε = 1,

−(2t+ 3)2(2t− 3)/16 if ε = −1.

For notational convenience, we set u = 2t+ 3 and v = 2t− 3 so that, u− v = 6. Thus,

s =

uv
2/16 if ε = 1,

−u2v/16 if ε = −1.

Now solving for α in s = (α + 4)/(α + 3), we get that

α + 3 =

16/(uv2 − 16) if s = uv2/16,

−16/(u2v + 16) if s = −u2v/16.
(21)

Let A be the unique rational root of Rg(x). Recall that Rg(x) is given by

Rg(x) = x3 + 6(α + 4)x2 − 12(α + 4)(α + 2)x− 72(α + 4)2(α + 2)− 64(α + 4)2.

It follows that
A = x/2(α + 3) + α + 4,

where x ∈ Q is a root of r(x, s) = 0. Note that x = (4t2 − 9)/4 = uv/4. Putting the values of x
and α above, we get

A =


uv(uv2 − 16)

128
+

uv2

uv2 − 16
if α + 3 = 16/(uv2 − 16),

−uv(u2v + 16)

128
+

u2v

u2v + 16
if α + 3 = −16/(u2v + 16).

(22)

Recall that if Rg(x) has exactly one rational root A, then Gal(g) = D4 or Gal(g) = Z/4Z. In
order to finish the proof of Theorem 1.2, we must eliminate the occurrence of the latter possibility.
On the other hand, we have to show that the former occurs infinitely often. This in turn is
determined by the factorization of the polynomial G(x) in Theorem 2.1 over the splitting field of
Rg(x). We recall that Discr(Rg) = Discr(g) = Discr(L(α)

4 ). Since, Rg(x) has a rational root, it
follows that the splitting field of Rg(x) is

K = Q
(√

Discr(Rg)

)
= Q

(√
Discr(g)

)
= Q

(√
Discr(L(α)

4 )

)
.

Recall that Discr(L(α)
4 ) = 3(α + 4)(α + 2) (mod Q2). Therefore,

K = Q
(√

∆
)
, ∆ = 3(α + 4)(α + 2).

Setting F (x) = g(x) in Theorem 2.1, we find that

G(x) = (x2 − Ax+ 3(α + 4)(α + 2))(x2 − 6(α + 4)− A).

Thus, by (iv) of Theorem 2.1, g(x) has the Galois group Z/4Z if and only if G(x) splits over
K = Q

(√
∆
)
. This is the case if and only if A2 − 12(α+ 4)(α+ 2) and 4(6(α+ 4) +A) (these

are the discriminants of the quadratic factors of G(x)) are nonzero squares in K. Note that

(A2 − 12(α + 4)(α + 2))((6(α + 4) + A)) = Rg(A) + 64(α + 4)2 = 64(α + 4)2.
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Since α ∈ Q, it therefore suffices to have 6(α+ 4) +A be a square in K in order for G(x) to
split completely over K. From Corollary 4.3, [4], we deduce that 6(α + 4) + A is square in K if
and only if (6(α + 4) + A)∆ = �. We substitute the values of α and A from (21) and (22), say,
we consider first

α + 3 = 16/(uv2 − 16).

After substituting α, A and ∆ in (6(α + 4) + A)∆ = �, we get

3× uv2

uv2 − 16
× 32− uv2

uv2 − 16
×
(

7uv2

uv2 − 16
+
uv(uv2 − 16)

128

)
= �.

We show that the last equation does not hold for any choice of integers u and v satisfying
u = v + 6. After identifying the obvious squares appearing on the left hand side above, we
rewrite the equation as

v(32− uv2)(uv2 − 16)((uv2 − 16)2 + 896v) = 3z2, (23)

where z 6= 0 is an integer. As noted previously, we may assume without any loss of generality
that u and v (as described in B4) are positive. Therefore, for (23) to hold, we must have that
(32 − uv2)(uv2 − 16) > 0. This implies that 16 < uv2 < 32. Note that if v ≥ 2, then
u = v + 6 ≥ 8 so that, uv2 ≥ 32. Therefore, we are left with the possibility that v = 1, and as
such, u = 7. But then uv2 = 7 < 16. This proves our assertion.

In the case that α+3 = −16/(uv2 +16), after substituting the values of ∆ = 3(α+4)(α+4)

and α from above and A from (21) in (6(α + 4) + A)∆ = �, we get

3u2v

u2v + 16
× −32− u2v

u2v + 16
×
(

7u2v

u2v + 16
− uv(u2v + 16)

128

)
= �,

where u = v + 6. Proceeding as before, we identify the obvious squares here and rewrite the last
equation as

u(u2v + 32)(u2v + 16)((u2v + 16)2 − 896u) = 3z2, (24)

where z 6= 0 is an integer. Observe that after putting u = v + 6 in u2v + 32, we get

u2v + 32 = v3 + 12v2 + 36v + 32 = (v + 2)2(v + 8).

Doing the same for u2v + 16 gives

u2v + 16 = v3 + 12v2 + 36v + 16 = (v + 4)(v2 + 8v + 4).

Plugging these values in (24), ignoring the square factors, we get

(v + 4)(v + 6)(v + 8)(v2 + 8v + 4)((v + 4)2(v2 + 8v + 4)2 − 896(v + 6)) = 3z2. (25)

We would like to establish that there are no integer points (v, z) with vz 6= 0 on the curve
given by (25). This is achieved as follows. First, we show that if (v, z) is an integer point on (25),
then for some integer z1 6= 0, the integer point (v, z1) lies on an elliptic curve of the shape

(v + 4)(v + 6)(v + 8) = bz21 where b|42. (26)
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We then take the help of Sage to find the integer points on these elliptic curves. Finally, we
arrive at a contradiction by plugging the values of v in (25) and showing that the product on the
left hand side of (25) is not of the form 3z2.

In order to obtain the desired elliptic curves, we first note that each factor appearing on the left
hand side of (25) can be uniquely expressed as m`2 where m and ` are nonzero integers with m
squarefree. We refer to m as the squarefree part of the concerned factor. Observe that product of
the squarefree parts of all the factors must be of the form 3k2 where k|z in (25). Thus, if m is the
squarefree part of a factor in (25), and p is prime diving m, then either p = 3 or there is another
factor in (25) with squarefree partm′ such that p|m′. Letmi denote the squarefree part of v+i for
i = 4, 6 and 8. We investigate the possible prime divisors of mi for each i ∈ {4, 6, 8}. Let p|mi

and p 6= 3. Note that if p|mj for some j 6= i, then p divides v + i− (v + j) = i− j ∈ {±2,±4}.
Thus, p = 2 in that case. Now, if p|(v2 + 8v + 4), then we have

q(i) = i2 − 8i+ 4 ≡ 0 (mod p).

Now, q(4) = −12, q(6) = −8 and q(8) = 4. It follows that p = 2 (note that we have assumed
p 6= 3). Similarly, if p|((v + 4)2(v2 + 8v + 4)2 − 896(v + 6)), then

q(i) = (4− i)2(i2 − 8i+ 4)2 − 896(6− i) ≡ 0 (mod p).

We have q(4) = −28 · 7, q(6) = −28 and q(8) = 211. Thus, p ∈ {2, 7}. The above analysis
shows that if p|mi for some i ∈ {4, 6, 8}, then either p = 3 or p ∈ {2, 7}. Therefore, mi|42 and
we get the elliptic curve (26). We now analyse this elliptic curve. In order to put the curve (26)
in the Weierstrass form, we perform a couple of transformations. First, we set v + 6 = x1 to get

x1(x
2
1 − 4) = bz21 .

Next, we multiply both sides by b3, and set x = bx1 and y = b2z1 to get

x(x2 − 4b2) = y2; y 6= 0; b ∈ B := {1, 2, 3, 6, 7, 14, 21, 42}. (27)

We used Sage to find all (finitely many) the integral points (x, y) on (27) for each b ∈ B.
Among these, we discarded those solutions (x, y) where, either y = 0, b - x or b2 - y. This
procedure gave us the following 6 values of x:

b = 3, x ∈ {−3, 12, 18, 294}; b = 7, x = 112 and b = 42, x = 588.

We now obtain the values of x1 = x/b as

b = 3, x1 ∈ {−1, 4, 6, 98}; b = 7, x1 = 16 and b = 42, x1 = 14.

Accordingly, we obtain the values of v = x1 − 6 as v ∈ {−7,−2, 0, 92, 10, 8}. Recall that
only v > 0 are being considered here. This leaves us with the possibility that v ∈ {92, 10, 8}. It
is then easily verified that none of these values of v yields an admissible value for z in (24).

Thus, we have established that if the resolvent cubic of L(α)
4 (x) splits but not completely, then

Gal(L(α)
4 ) = D4. Furthermore, this is the case if (see (21))

α + 3 ∈ {16/(uv2 − 16),−16/(u2v + 16)},
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where u = v + 6. Setting v = λ and u = λ + 6 if α + 3 = 16/(uv2 − 16) and, u = λ and
v = λ− 6 if α + 3 = −16/(u2v + 16), we get the two sets (corresponding to ε = ±1) of values
of α in Theorem 1.2 for which Gal(L(α)

4 ) = D4. The Galois group is S4 by Theorem 2.1 for all
other values of α considered in Theorem 1.2. This concludes the proof of Theorem 1.2. �

Acknowledgements

The authors would like to express their sincere gratitude to all the referees for providing their
valuable feedback that certainly helped us to make a better presentation of the material.

References

[1] Banerjee, P. (2014). On Galois groups of Laguerre polynomials whose discriminants are
squares. Journal of Number Theory, 141, 36–58.

[2] Banerjee, P. (2018). On Galois groups of a one-parameter orthogonal family of polynomials.
Acta Arithmetica, 190, 1–36.

[3] Banerjee, P., Filaseta, M., Finch, C., & Leidy, J. (2013). On classifying Laguerre
polynomials which have Galois group the alternating group. Journal de Théorie des
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