The structure of prime sums

J. V. Leyendekkers and A. G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 4, Pages 86—91
DOI: 10.7546/nntdm.2018.24.4.86-91
Download full paper: PDF, 114 Kb

Details

Authors and affiliations

J. V. Leyendekkers
Faculty of Science, The University of Sydney
NSW 2006, Australia

A. G. Shannon
Emeritus Professor, University of Technology Sydney
NSW 2007, Australia, and
Warrane College, The University of New South Wales
NSW 2033, Australia

Abstract

The development of prime sequences has allowed the detailed structure of prime sums to be made. Such structures help to explain why some sums yield primes while others give composites. The application of right-end-digit (modulo 10) structure permits analysis independent of the size of the integers being examined.

Keywords

  • Prime numbers
  • Composite numbers
  • Right-end-digits
  • Modulus

2010 Mathematics Subject Classification

  • 11A07
  • 11A51
  • 11B37

References

  1. Vassilev-Missana, M., & Atanassov, K. T. (2004) Some Smarandache Problems. Phoenix, AZ: Hexis.
  2. Leyendekkers, J. V., & Shannon, A. G. (2018) Prime sequences. Notes on Number Theory and Discrete Mathematics, 24 (3), 77–83.
  3. Shannon, A. G, & Leyendekkers, J. V. (2018) The Fibonacci Numbers and Integer Structure. New York: Nova.
  4. Leyendekkers, J. V., & Shannon, A. G. (2018) Structural sequences for primes using right-end-digits. Notes on Number Theory and Discrete Mathematics, 24 (2), 63–70.

Related papers

Cite this paper

APA

Leyendekkers, J. V., & Shannon. A. G. (2018). The structure of prime sums. Notes on Number Theory and Discrete Mathematics, 24(4), 86-91, doi: 10.7546/nntdm.2018.24.4.86-91.

Chicago

Leyendekkers, J. V. and A. G. Shannon. “The Structure of Prime Sums.” Notes on Number Theory and Discrete Mathematics 24, no. 4 (2018): 86-91, doi: 10.7546/nntdm.2018.24.4.86-91.

MLA

Leyendekkers, J. V. and A. G. Shannon. “The Structure of Prime Sums.” Notes on Number Theory and Discrete Mathematics 24.4 (2018): 86-91. Print, doi: 10.7546/nntdm.2018.24.4.86-91.

Comments are closed.