The Redheffer numbers and their applications

Ömür Deveci and Anthony G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 4, Pages 26—37
DOI: 10.7546/nntdm.2018.24.4.26-37
Download full paper: PDF, 142 Kb

Details

Authors and affiliations

Ömür Deveci
Department of Mathematics, Faculty of Science and Letters, Kafkas University
36100 Kars, Turkey

Anthony G. Shannon
Fellow, Warrane College, The University of New South Wales
Kensington 2033, Australia

Abstract

In this paper, we define the Redheffer numbers and then we obtain their miscellaneous properties. Also, we study the Redheffer numbers modulo m. Furthermore, we define the Redheffer orbits and the basic Redheffer orbits of 2-generator and 3-generator groups, then we examine the lengths of the periods of these orbits. Finally, we obtain the Redheffer lengths and the basic Redheffer lengths of some special finite groups as applications of Redheffer orbits and the basic Redheffer orbits.

Keywords

  • Redheffer numbers
  • Matrix
  • Sequence
  • Group
  • Length

2010 Mathematics Subject Classification

  • 11B50
  • 20F05
  • 15A36
  • 20D60

References

  1. Aydın, H., & Dikici, R. (1998) General Fibonacci sequences in finite groups, The
    Fibonacci Quart., 36(3), 216–221.
  2. Bordelles, O., & Cloitre, B. (2009) A matrix inequality for Möbius functions, Journal of Inequality in Pure and Appl. Math., 10(3), 62, 1–17
  3. Campbell, C. M., Doostie, H., & Robertson, E. F. (1990) Fibonacci length of generating pairs in groups in Applications of Fibonacci Numbers, Vol. 3 Eds. G. E. Bergum et al. Kluwer Academic Publishers, 27–35.
  4. Chen, W. Y. C., & Louck, J. D. (1996) The combinatorial power of the companion
    matrix, Linear Algebra and its Appl., 232, 261–278.
  5. Coxeter, H. S. M., & Moser, W. O. J. (1972) Generator and relations for discrete groups, 3rd edition, Springer, Berlin.
  6. Deveci, O., & Karaduman, E. (2012) The generalized order-k Lucas sequences in Finite groups, J. Appl. Math., 464580-1–464580-15.
  7. Deveci, O., & Karaduman, E. (2011) On the basic k-nacci sequences in finite groups, Discrete Dyn. Nat. Soc., 639476-1–639476-13.
  8. Deveci, O., & Karaduman, E. (2012) The cyclic groups via the Pascal matrices and the generalized Pascal matrices, Linear Algebra and its Appl., 437, 2538–2545.
  9. Deveci, O., & Karaduman, E. The Pell sequences in finite groups, Util. Math., to appear.
  10. Deveci, O. The Pell–Padovan sequences and the Jacobsthal–Padovan sequences in finite groups, Util. Math., to appear.
  11. Doostie, H., & Hashemi, M. (2006) Fibonacci lengths involving the Wall number k(n), J. Appl. Math. Comput., 20, 171-180.
  12. Falcon, S., & Plaza, A. (2009) k-Fibonacci sequences modulo m, Chaos, Solitons and Fractals, 41, 497–504.
  13. Frey, D. D., & Sellers, J. A. (2000) Jacobsthal numbers and alternating sign matrices, Journal of Integer Sequences, 2, Article 00.2.3.
  14. Hall, P. (1936) The Eulerian functions of a group, Quart. J. Math., 7, 134–151.
  15.  Jarvis, T. J. (1990) A dominant negative eigenvalue of a matrix of Redheffer, Linear Algebra and its Appl., 142, 141–152.
  16. Kalman, D. (1982) Generalized Fibonacci numbers by matrix methods, The Fibonacci Quart., 20(1), 73–76.
  17. Kilic, E. (009) The generalized Pell (p,i)-numbers and their Binet formulas, combinatorial representations, sums, Chaos, Solitons and Fractals, 40(4), 2047–2063.
  18. Kilic, E., & Stakhov, A. P. (2009) On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents, Chaos, Solitons and Fractals, 40, 2210–2221.
  19. Knox, S. W. (1992) Fibonacci sequences in finite groups, The Fibonacci Quart., 30(2), 116–120.
  20. Lü K., & Wang, J. (2007) k-step Fibonacci sequence modulo m, Util. Math., 71, 169–178.
  21. Ozkan, E., Aydin, H., & Dikici, R. (2003) 3-step Fibonacci series modulo m, Appl. Math. and Compt., 143, 165–172.
  22. Redheffer, R. M. (1997) Eine explizit lösbare optimierungsaufgabe, Internat. Schriftenreihe Numer. Math., 36.
  23. Stakhov, A. P., & Rozin, B. (2006) Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos, Solitons and Fractals, 27, 1162–1167.
  24. Tasci, D., & Kilic, E. (2006) On the order-k generalized Lucas numbers, Appl. Math. Comput., 20, 171–180.
  25. Tuglu, N., Kocer, E. G., & Stakhov, A. P. (2004) Bivarite Fibonacci like p-polinomials, Appl. Math. and Compt., 155, 637–641.
  26. Vaughan, R. C. (1996) On the eigenvalues of Redheffer’s matrix, II, J. Austral. Math. Soc. Ser., A60 (2), 260–273.
  27. Wall, D. D. (1960) Fibonacci series modulo m, Amer. Math. Monthly, 67, 525–532.
  28. Wilf, H. S. (2004) The Redheffer matrix of a partially ordered set, The Elect. J. Comb., 11(2), #R10, 1–4.
  29. Yilmaz, F., & Bozkurt, D. (2009) The generalized order-k Jacobsthal numbers, Int. J. Contemp. Math. Sciences, 4(34), 1685–1694.

Related papers

Cite this paper

APA

Deveci, Ö., & Shannon, A. G. (2018). The Redheffer numbers and their applications. Notes on Number Theory and Discrete Mathematics, 24(4), 26-37, doi: 10.7546/nntdm.2018.24.4.26-37.

Chicago

Deveci, Ömür and Anthony G. Shannon. “The Redheffer Numbers and Their Applications.” Notes on Number Theory and Discrete Mathematics 24, no. 4 (2018): 26-37, doi: 10.7546/nntdm.2018.24.4.26-37.

MLA

Deveci, Ömür and Anthony G. Shannon. “The Redheffer Numbers and Their Applications.” Notes on Number Theory and Discrete Mathematics 24.4 (2018): 26-37. Print, doi: 10.7546/nntdm.2018.24.4.26-37.

Comments are closed.