Inequalities for φ and ψ functions (III)

Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 23, 2017, Number 1, Pages 19—23
Download full paper: PDF, 148 Kb

Details

Authors and affiliations

Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBPhBME, Bulgarian Academy of Sciences
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria
and
Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8000, Bulgaria

Abstract

A new arithmetic function is defined and some of its properties are studied.

Keywords

  • Arithmetic function
  • Natural number
  • Prime number

AMS Classification

  • 11A25

References

  1. Atanassov, K. (1991) Inequalities for φ and σ functions. I. Bulletin of Number Theory and Related Topics, XV(1–3), 12–14.
  2. Atanassov, K. (1991) Inequalities for φ and σ functions. II. Bulletin of Number Theory and Related Topics, XV(1–3), 15–18.
  3. Atanassov, K. (1991) Inequalities for φ and σ functions. III. Bulletin of Number Theory and Related Topics, XV(1–3), 19–20.
  4. Atanassov, K. (1996) Inequalities for φ and ψ functions (II), Octogon, 4(2), 18–20.
  5. Atanassov, K. (2008) Inequalities related to φ, ψ and σ functions (III), Number Theory and Discrete Mathematics, 14(1), 16–24.
  6. Mitrinovic, D. & Sandor, J. (1996) Handbook of Number Theory, Kluwer Academic Publishers.
  7. Nagell, T. (1950) Introduction to Number Theory, John Wiley & Sons, New York.

Related papers

Cite this paper

APA

Atanassov, K. T. (2017). Inequalities for φ and ψ functions (III). Notes on Number Theory and Discrete Mathematics, 23(1), 19-23.

Chicago

Atanassov, Krassimir T. “Inequalities for φ and ψ Functions (III).” Notes on Number Theory and Discrete Mathematics 23, no. 1 (2017): 19-23.

MLA

Atanassov, Krassimir T. “Inequalities for φ and ψ Functions (III).” Notes on Number Theory and Discrete Mathematics 23.1 (2017): 19-23. Print.

Comments are closed.