J. V. Leyendekkers and A. G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 17, 2011, Number 4, Pages 61—68

**Download full paper: PDF, 119 Kb**

## Details

### Authors and affiliations

J. V. Leyendekkers

*Faculty of Science, The University of Sydney
Sydney, NSW 2006, Australia
*

A. G. Shannon

*Faculty of Engineering & IT, University of Technology
Sydney, NSW 2007, Australia
*

### Abstract

Classes of the modular ring Z_{4} were substituted into convergent infinite series for *π* and √2 to obtain *Q*, the ratio of the arc of a circle to the side of an inscribed square to yield *π* = 2√2 *Q*. The corresponding convergents of the continued fractions for π, √2 and *Q* were then considered, together with the class patterns of the modular rings {Z_{4}, Z_{5}, Z_{6}} and decimal patterns for *π*.

### Keywords

- Integer structure analysis
- Modular rings
- Prime numbers
- Fibonacci numbers
- Arctangents
- Infinite series
- Pell sequence
- Continued fractions
- Triangular numbers

### AMS Classification

- 11A41
- 11A55
- 11A07

### References

- Ball, W.W.R., H.S.M. Coxeter. 1956.
*Mathematical Recreations and Essays.*New York: Macmillan. - Bennett, A.A. 1925. Two New Arctangent Relations for π.
*The American Mathematical Monthly*. 32: 253–255. - Birch, R.H. 1946. An Algorithm for the Construction of Arctangent Relations.
*Journal of the London Mathematical Society.*21: 173–174. - Horadam, A.F. 1971. Pell Identities.
*The Fibonacci Quarterly*. 9: 245–252. - Kasner, E., J. Newman. 1959.
*Mathematics and the Imagination.*Norwich: Jarrold. - Lafer, Phil. 1971. Discovering the Square-triangular Numbers.
*The Fibonacci Quarterly.*9: 93-105. - Lehmer, D.H. 1936. Problem 3801.
*The American Mathematical Monthly.*43: 580. - Lehmer, D.H. 1938. On Arctangent Relations for π.
*The American Mathematical Monthly.*45: 657–664. - Leyendekkers, J.V., A.G. Shannon, J.M. Rybak. 2007.
*Pattern Recognition: Modular Rings and Integer Structure*. North Sydney: Raffles KvB Monograph No 9. - Leyendekkers, J.V., A.G. Shannon. 2011. Modular Rings and the Integer 3.
*Notes on Number Theory & Discrete Mathematics*. 17 (2): 47–51. - Leyendekkers, J.V., A.G. Shannon. 2011. The Modular Ring
*Z*5.*Notes on Number Theory & Discrete Mathematics.*In press. - Mack, J.M. 1970. The Continued Fraction Algorithm.
*Bulletin of the Australian Mathematical Society*. 3: 413–422. - Nimbran, Amrik Singh. 2010. On the Derivation of Machin-like Arctangent Identities for Computing Pi (π).
*The Mathematics Student*. 79: 171–186. - Shanks, D., J.W. Wrench Jr. 1962. Calculation of π to 100,000 Decimals.
*Mathematics of Computation.*16: 76–99. - Sierpinski, W. 1964. Sur les Nombres Pentagonaux.
*Bulletin de la*Société*Royale*des*Sciences de Liège*. 33: 513–517. - Stormer, C. 1899. Solution complet en nombres entiers de l’equation
*m*.arctan*g*[1/*x*] +*n*.arctan*g*[1/*y*] =*k*[*π*/4].*Bulletin de la Société Mathématique de France.*27: 160–170. - Todd, John. 1949. A Problem on Arc Tangent Relations.
*The American Mathematical Monthly.*56: 517–528. - Wetherfield, Michael Roby. 1996. The Enhancement of Machin’s Formula by Todd’s Process.
*The Mathematical Gazette.*80: 333–344.

## Related papers

## Cite this paper

APALeyendekkers, J., & Shannon, A. (2011). The structure of ‘Pi’, Notes on Number Theory and Discrete Mathematics, 17(4), 61-68.

ChicagoLeyendekkers, JV, and AG Shannon. “The Structure of ‘Pi’.” Notes on Number Theory and Discrete Mathematics 17, no. 4 (2011): 61-68.

MLALeyendekkers, JV, and AG Shannon. “The Structure of ‘Pi’.” Notes on Number Theory and Discrete Mathematics 17.4 (2011): 61-68. Print.