K. Atanassov

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 7, 2001, Number 1, Pages 1—3

**Download full paper: PDF, 105 Kb**

## Details

### Authors and affiliations

K. Atanassov

*Centre for Biomedical Engineering – Bulgarian Academy of Sciences,
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria*

### Abstract

*φ* and *σ* functions (see, e.g., [1]) are two of the most important arithmetic functions.

They have a lot of very interesting properties. Some of them will be discussed below.

### References

- Chandrasekharan K. Introduction to Analytic Number Theory. Springer-Verlag, Berlin, 1968.
- Atanassov K., Short proof of a hypothesis of A. Mullin. Bull. of Number Theory and Related Topics, Vol. IX (1985), No. 2, 9-11.
- Atanassov K. New integer functions, related to
*φ*and*σ*functions. Bull. of Number Theory and Related Topics, Vol. XI (1987), No. 1, 3-26. - Aranassov K. Remarks on
*φ*,*σ*and*ψ*functions. Mathematical Forum (in press, 2001).

## Related papers

## Cite this paper

APAAtanassov, K. (2001). Remarks on *φ*, *σ*, *ψ* and *ρ *functions. Notes on Number Theory and Discrete Mathematics, 7(1), 1-3.

Atanassov, K. “Remarks on *φ*, *σ*, *ψ* and *ρ *functions.” Notes on Number Theory and Discrete Mathematics 7, no. 1 (2001): 1-3.

Atanassov, K. “Remarks on *φ*, *σ*, *ψ* and *ρ *functions.” Notes on Number Theory and Discrete Mathematics 7.1 (2001): 1-3. Print.