On the bivariate Padovan polynomials matrix

Orhan Dişkaya, Hamza Menken and Paula Maria Machado Cruz Catarino
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 3, Pages 407–420
DOI: 10.7546/nntdm.2023.29.3.407-420
Full paper (PDF, 237 Kb)

Details

Authors and affiliations

Orhan Dişkaya
Department of Mathematics, Mersin University
Mersin, Turkey

Hamza Menken
Department of Mathematics, Mersin University
Mersin, Turkey

Paula Maria Machado Cruz Catarino
Department of Mathematics, University of Trás-os-Montes and Alto Douro
Vila Real, Portugal

Abstract

In this paper, we intruduce the bivariate Padovan sequence we examine its various identities. We define the bivariate Padovan polynomials matrix. Then, we find the Binet formula, generating function and exponential generating function of the bivariate Padovan polynomials matrix. Also, we obtain a sum formula and its series representation.

Keywords

  • Padovan numbers
  • Padovan polynomials
  • Binet-like formula
  • Generating function
  • Bivariare polynomials
  • Matrix

2020 Mathematics Subject Classification

  • 11B39
  • 05A15

References

  1. Catalani, M. (2002). Generalized bivariate Fibonacci polynomials. arXiv preprint math/0211366.
  2. Çakmak, T., & Karaduman, E. (2018). On the derivatives of bivariate Fibonacci polynomials. Notes on Number Theory Discrete Mathematics, 24(3), 37–46.
  3. Deveci, Ö., & Shannon, A. G. (2017). Pell–Padovan-circulant sequences and their applications. Notes on Number Theory and Discrete Mathematics, 23(3), 100–114.
  4. Dos Santos Mangueira, M. C., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2022). Leonardo’s bivariate and complex polynomials. Notes on Number Theory and Discrete Mathematics, 28(1), 115–123.
  5. Kaygisiz, K., & Sahin, A. (2012). Generalized bivariate Lucas p-polynomials and
    Hessenberg Matrices. Journal of Integer Sequences, 15(2), 3.
  6. Kim, T., Kim, D. S., Dolgy, D. V., & Kwon, J. (2019). Representing sums of finite
    products of Chebyshev polynomials of the first kind and Lucas polynomials by Chebyshev polynomials. Mathematics, 7(1), 26.
  7. Kim, T., Dolgy, D. V., Kim, D. S. and Seo, J. J. (2017). Convolved Fibonacci numbers and their applications. Ars Combinatoria, 135, 119–131.
  8. Kim, T., Kim, D. S., Dolgy, D. V., & Park, J. W. (2018). Sums of finite products of
    Chebyshev polynomials of the second kind and of Fibonacci polynomials. Journal of Inequalities and Applications, 2018, Article 148.
  9. Kim, T., & Kim, D. S. (2022). Degenerate Whitney numbers of first and second kind of Dowling lattices. Russian Journal of Mathematical Physics, 29(3), 358–377.
  10. Kim, T., Kim, D. S., Jang, L. C., & Jang, G. W. (2018). Fourier series for functions related to Chebyshev polynomials of the first kind and Lucas polynomials. Mathematics, 6(12), 276.
  11. Koçer, E. G., & Tuncez, S. (2016). Bivariate Fibonacci and Lucas like polynomials. Gazi University Journal of Science, 29, 109–113.
  12. Koshy, T. (2018). Fibonacci and Lucas Numbers with Applications. Volume 1. John Wiley & Sons, New Jersey.
  13. Koshy, T. (2019). Fibonacci and Lucas Numbers with Applications. Volume 2. John Wiley & Sons, New Jersey.
  14. Özkan, E., Yilmaz, N. S., & Włoch, A. (2021). On F3(k, n)-numbers of the Fibonacci type. Boletín de la Sociedad Matemática Mexicana, III. Ser. 27(3), Article 77.
  15. Panwar, Y. K., & Singh, M. (2014). Generalized bivariate Fibonacci-like polynomials. International Journal of Pure Mathematics, 1, 8–13.
  16. Saba, N., & Boussayoud, A. (2020). Complete homogeneous symmetric functions of Gauss Fibonacci polynomials and bivariate Pell polynomials. Open Journal of Mathematical Science, 4, 179–185.
  17. Saba, N., Boussayoud, A., & Abderrezzak, A. (2021). Symmetric and generating
    functions of generalized (p, q)−numbers. Kuwait Journal of Science, 84(4), DOI:
    10.48129/kjs.v48i4.10074.
  18. Sloane N. J. A. (2021). Sequences A000931 in The On-Line Encyclopedia of Integer Sequences. Available online at: https://oeis.org/A000931.
  19. Sokhuma, K. (2013). Matrices formula for Padovan and Perrin sequences. Applied Mathematical Sciences, 7, 7093–7096.
  20. Soykan, Y. (2021). On Generalized Padovan numbers. Preprints, 2021100101 (DOI: 10.20944/preprints202110.0101.v1)
  21. Tan, M., & Zhang, Y. (2005). A note on bivariate and trivariate Fibonacci polynomials. Southeast Asian Bulletin of Mathematics, 29, 975–990.
  22. Tasci, D., Cetin Firengiz, M., & Tuglu, N. (2012). Incomplete bivariate Fibonacci and Lucas p-polynomials. Discrete Dynamics in Nature and Society, 2012, Article ID 840345.
  23. Tuglu, N., Koçer, E. G., & Stakhov, A. (2011). Bivariate Fibonacci like p-polynomials. Applied Mathematics and Computation, 4, 179–185.
  24. Yilmaz, N., & Taskara, N. (2013). Binomial transforms of the Padovan and Perrin matrix sequences. Abstract and Applied Analysis, 2013, Article ID 497418.
  25. Uygun, S., & Zorcelik, A. (2018). Bivariate Jacobsthal and bivariate Jacobsthal–Lucas matrix polynomial sequences. Journal of Mathematical and Computational Science, 8(3), 331–344.
  26. Vieira, R. P. M., dos Santos Mangueira, M. C., Alves, F. R. V., & Catarino, P. M. M. C. (2021). Perrin’s bivariate and complex polynomials. Notes on Number Theory and Discrete Mathematics, 27(2), 70–78.

Manuscript history

  • Received: 9 October 2022
  • Revised: 24 March 2023
  • Accepted: 28 May 2023
  • Online First: 5 June 2023

Copyright information

Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Dişkaya, O., Menken, H., & Catarino, P. M. M. C. (2023). On the bivariate Padovan polynomials matrix. Notes on Number Theory and Discrete Mathematics, 29(3), 407-420, DOI: 10.7546/nntdm.2023.29.3.407-420.

Comments are closed.