**A. D. Godase**

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 28, 2022, Number 3, Pages 466–476

DOI: 10.7546/nntdm.2022.28.3.466-476

**Full paper (PDF, 213 Kb)**

## Details

### Authors and affiliations

A. D. Godase

*Department of Mathematics, V. P. College Vaijapur
Aurangabad (MH), India
*

### Abstract

In this paper, we derive some important identities involving *k*-Jacobsthal and *k*-Jacobsthal–Lucas numbers. Moreover, we use multinomial theorem to obtain distinct binomial sums of *k*-Jacobsthal and *k*-Jacobsthal–Lucas numbers.

### Keywords

- Jacobsthal number
- Jacobsthal–Lucas number
*k*-Jacobsthal number*k*-Jacobsthal–Lucas number

### 2020 Mathematics Subject Classification

- 11B37
- 11B50

### References

- Campos, H., Catarino, P., Aires, A. P., Vasco, P., & Borges, A. (2014). On Some Identities of
*k*-Jacobsthal–Lucas Numbers.*International Journal of Mathematical Analysis*, 8(10), 489–494. - Carlitz, L., & Ferns, H. (1970). Some Fibonacci and Lucas Identities.
*The Fibonacci Quarterly*, 8(1), 61–73. - Cerin, Z. (2007). Sums of squares and products of Jacobsthal numbers.
*Journal of Integer Sequences*, 10, Article 07.2.5. - Godase, A. D. (2022). Some Binomial Sums of
*k*-Jacobsthal and*k*-Jacobsthal–Lucas numbers.*Communications in Mathematics and Applications*, submitted (2022). - Horadam, A. F. (1996). Jacobsthal Representation Numbers.
*The Fibonacci Quarterly*, 34, 40–54. - Jhala, D., Rathore, G. P. S., & Sisodiya, K. (2014). Some Properties of
*k*-Jacobsthal Numbers with Arithmetic Indexes.*Turkish Journal of Analysis and Number Theory*, 2(4), 119–124. - Jhala, D., Rathore, G. P. S., & Sisodiya, K. (2013). On Some Identities for
*k*-Jacobsthal Numbers.*International Journal of Mathematical Analysis*, 7(12), 551–556. - Koken, F., & Bozkurt, D. (2008). On the Jacobsthal–Lucas numbers by matrix methods.
*International Journal of Contemporary Mathematical Sciences*, 3(33), 1629–1633. - Srisawat, S., Sriprad, W., & Sthityanak, O. (2015). On the
*k*-Jacobsthal Numbers by Matrix Methods.*Progress in Applied Science and Technology*, 5(1), 70–76. - Uygun, S. (2015). The (
*s*,*t*)-Jacobsthal and (*s*,*t*)-Jacobsthal Lucas Sequences.*Applied Mathematical Sciences*, 70(09), 3467–3476. - Uygun, S., & Eldogan, H. (2016).
*k*-Jacobsthal and*k*-Jacobsthal Lucas Matrix Sequences.*International Mathematical Forum*, 11, 145–154. - Uygun, S., & Eldogan, H. (2016). Properties of
*k*-Jacobsthal and*k*-Jacobsthal Lucas Sequences.*General Mathematics Notes*, 36(1), 34–47. - Uygun, S., & Owusu, E. (2016). A new generalization of Jacobsthal numbers (bi-periodic Jacobsthal sequences).
*Journal of Mathematical Analysis*, 7(5), 28–39. - Uygun, S., & Uslu, K. (2016). The (
*s*,*t*)-Generalized Jacobsthal Matrix Sequences.

*Computational Analysis*, Springer Proceedings in Mathematics & Statistics, Vol. 155, 325–336. - Zhang, Z. (1997). Some Identities Involving Generalized Second-order Integer Sequences.
*The Fibonacci Quarterly*, 35(3), 265–267.

### Manuscript history

- Received: 22 February 2022
- Revised: 29 July 2022
- Accepted: 1 August 2022
- Online First: 2 August 2022

## Related papers

## Cite this paper

Godase, A. D. (2022). Binomial sums with *k*-Jacobsthal and *k*-Jacobsthal–Lucas numbers. *Notes on Number Theory and Discrete Mathematics*, 28(3), 466-476, DOI: 10.7546/nntdm.2022.28.3.466-476.