Roman Popovych

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 2, Pages 47–52

DOI: 10.7546/nntdm.2020.26.2.47-52

**Full paper (PDF, 97 Kb)**

## Details

### Authors and affiliations

Roman Popovych

*Department of Specialized Computer Systems, Lviv Polytechnic National University
Bandery Str.,12, Lviv, 79013, Ukraine
*

### Abstract

We obtain explicit lower bound on multiplicative orders of all elements in finite field extensions generated by a root of unity. The bound does not depend on any unknown constant. The result of Ahmadi, Shparlinski and Voloch [1] is a consequence of our main result.

### Keywords

- Finite field
- Multiplicative order
- Lower bound
- Partition

### 2010 Mathematics Subject Classification

- 11T30

### References

- Ahmadi, O., Shparlinski, I. E., & Voloch, J. F. (2010). Multiplicative order of Gauss periods, Intern. J. Number Theory, 6 (4), 877–882.
- Andrews, G.E. (1976). The Theory of Partitions, Addison-Wesley, Reading.
- Cheng, Q. (2005). On the construction of finite field elements of large order, Finite Fields Appl., 11 (3), 358–366.
- Ehrlich, G. (1991). Fundamental Concepts of Abstract Algebra, PWS-Kent Publ., Boston.
- Gao, S. (1999). Elements of provable high orders in finite fields, Proc. Amer. Math. Soc., 127 (6), 1615–1623.
- Lidl, R., & Niederreiter, H. (1997). Finite Fields, Cambridge University Press.
- Maroti, A. (2003). On elementary lower bounds for the partition function, Integers, 3, A10.
- Martinez, F. E. B., & Reis, L. (2016). Elements of high order in Artin–Schreier extensions of finite fields F q , Finite Fields Appl., 41, 24–33.
- Mullen, G. L., & Panario, D. (2013) Handbook of Finite Fields, CRC Press, Boca Raton.
- Popovych, R. (2012). Elements of high order in finite fields of the form
*F*[_{q}*x*] /*Ф*(_{r}*x*), Finite Fields Appl., 18 (4), 700–710.

Popovych, R. (2013). Elements of high order in finite fields of the form*F*[_{q}*x*] / (*x*−^{m}*a*), Finite Fields Appl., 19 (1), 86–92. - Voloch, J. F. (2007). On the order of points on curves over finite fields, Integers, 7, A49.
- Voloch, J. F. (2010). Elements of high order on finite fields from elliptic curves, Bull. Aust. Math. Soc., 81 (3), 425–429.

## Related papers

## Cite this paper

Popovych, R. (2020). On multiplicative order of elements in finite fields based on cyclotomic polynomials. *Notes on Number Theory and Discrete Mathematics*, 26 (2), 47-52, DOI: 10.7546/nntdm.2020.26.2.47-52.