Kantaphon Kuhapatanakul, Natnicha Meeboomak and Kanyarat Thongsing
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310β5132, Online ISSN 2367β8275
Volume 24, 2018, Number 3, Pages 56β61
DOI: 10.7546/nntdm.2018.24.3.56-61
Download full paper: PDF, 146 Kb
Details
Authors and affiliations
Kantaphon Kuhapatanakul
Department of Mathematics, Faculty of Science,
Kasetsart University, Bangkok, Thailand
Natnicha Meeboomak
Department of Mathematics, Faculty of Science,
Kasetsart University, Bangkok, Thailand
Kanyarat Thongsing
Department of Mathematics, Faculty of Science,
Kasetsart University, Bangkok, Thailand
Abstract
Let π be a positive integer. We study the Diophantine equation Ξ οΈk=1n(π2π4 + (2π β π2)π2 + 1) = π¦2. This Diophantine equation generalizes a result of GΓΌrel [5] for π = 2. We also prove that the product (22 β 1)(32 β 1)β¦(π2 β 1) is a perfect square only for the values π for which the triangular number Tn is a perfect square.
Keywords
- Diophantine equation
- Perfect square
- Quartic polynomial
- Quadratic polynomial
2010 Mathematics Subject Classification
- 11D25
- 11D09
References
- Amdeberhan, T., Medina, L. A., & Moll, V. H. (2008) Arithmetical properties of a sequence arising from an arctangent sum, J. Number Theory, 128(6), 1807β1846.
- Chen, Y. G., Gong, M. L., & Ren, X. Z. (2013) On the products (1π +1)(2π +1)…(ππ +1), J. Number Theory, 133(8), 2470β2474.
- Cilleruelo, J. (2008) Squares in (12+1) . . . (π2+1), J. Number Theory, 128(8), 2488β2491.
- Fang, J. H. (2009) Neither Ξ οΈπ=1n(4π2 + 1) nor Ξ οΈπ=1n(2π(π β 1) + 1) is a perfect square, Integers, 9, 177β180.
- GΓΌrel, E. (2016) On the occurrence of perfect squares among values of certain polynomial products, Amer. Math. Monthly, 123(6), 597β599.
- GΓΌrel, E. & Kisisel, A. U. O. (2010) A note on the products (1π+1)…(ππ+1), J. Number Theory, 130(1), 187β191.
- Sloane, N. J. A. (2011) The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org.
- Yang, S., TogbΓ©, A. & He, B. (2011) Diophantine equations with products of consecutive values of a quadratic polynomial, J. Number Theory, 131(5), 1840β1851.
- Zhang,W. &Wang, T. (2012) Powerful numbers in (1π +1)(2π +1)…(ππ +1), J. Number Theory, 132(11), 2630β2635.
Related papers
Cite this paper
Kuhapatanakul, K., Meeboomak , N., & Thongsing, K. (2018). On products of quartic polynomials over consecutive indices which are perfect squares. Notes on Number Theory and Discrete Mathematics, 24(3), 56-61, doi: 10.7546/nntdm.2018.24.3.56-61.