**Pentti Haukkanen and R. Sivaramakrishnan**

Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132

Volume 4, 1998, Number 3, Pages 93–100

**Full paper (PDF, 320 Kb)**

## Details

### Authors and affiliations

Pentti Haukkanen

*Department of Mathematical Sciences, University of Tampere,
P.O.Box 607, FIN-33101 Tampere, Finland
*

R. Sivaramakrishnan

*Department of Studies in Mathematics, Mangalore University,
Dk 574199, India*

### Abstract

Nagell’s totient θ(*n, r*) counts the number of solutions of the congruence (*) *n = x + y* (mod *r* ) under the restriction (*x, r*) = (*y, r*) = 1. In this paper we evaluate the number θ(*n, r, q*) of solutions of the congruence (*) under the restriction (*x,r*) = (*y,r*) = *q,* where *q|r*, via Ramanathan’s approach to class-division of integers (mod *r*).

### References

- Tom M. Apostol: Introduction to Analytic Number Theory, Springer-Verlag UTM (1976).
- Umberto Cerruti: Computing the number of restricted solutions of linear congruences by using generalized Ramanujan sums and matrices (Extended Abstract) (1996).
- Eckford Cohen: A class of arithmetical functions, Proc. Nat. Acad. Sci. (USA) 41 (1955), 939-944.
- P. Haukkanen and Paul J. McCarthy: Sums of values of even functions, Portugal. Math. 48 (1991), 53-66.
- Paul J. McCarthy: Counting restricted solutions of a linear congruence, Nieuw Arch. Wish. (3) XXV (1977), 133-147.
- Paul J. McCarthy: Introduction to Arithmetical Functions, Springer-Verlag Universitext (1986).
- T. Nagell: Verallgemeinerung eines Satzes von Schemmel, Skr. Norske Vod. Akad. Oslo (Math. Class) I, No. 13 (1923), 23-25.
- C. A. Nicol and H. S. Vandiver: A von Sterneck arithmetical function and restricted partitions with respect to a modulus, Proc. Nat. Acad. Sci. (USA) 40 (1954), 825-835.
- K. G. Ramanathan: Some applications of Ramanujan’s trigonometrical sum Cm(n), Proc. Ind. Acad. Sci. (A) 20 (1944), 62-69.
- David Rearick: A linear congruence with side conditions, Amer. Math. Monthly 70 (1963), 837-840.
- R. Sivaramakrishnan: Classical Theory of Arithmetic Functions, Marcel Dekker: Monographs and Text Books in Pure and Applied Mathematics No. 126 (1989).
- R. Vaidyanathaswamy: A remarkable property of integers (mod N) and its bearing on group theory, Proc. Ind. Acad. Sci. Section A (1937), 63-75.

## Related papers

- Brown, S. (2024). Distance between consecutive elements of the multiplicative group of integers modulo
*n*.*Notes on Number Theory and Discrete Mathematics*, 30(1), 81-99.

## Cite this paper

Haukkanen, P., & Sivaramakrishnan, R. (1998). Nagell’s totient revisited. *Notes on Number Theory and Discrete Mathematics*, 4(3), 93-100.