Teerapat Srichan

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 1, Pages 70—74

DOI: 10.7546/nntdm.2020.26.1.70-74

**Download full paper: PDF, 157 Kb**

## Details

### Authors and affiliations

Teerapat Srichan

*Department of Mathematics, Faculty of Science
Kasetsart University, Bangkok, Thailand
*

### Abstract

We use the exponent pair to bound sums where and are primitive Dirichlet characters with conductors and , respectively.

### Keywords

- Character sums
- Dirichlet convolutions
- Exponent pair

### 2010 Mathematics Subject Classification

- Primary: 11L07
- Secondary: 11N37, 11M06

### References

- Banks, W. D., & Shparlinski, I. E. (2010). Sums with convolutions of Dirichlet characters, Manuscripta Math. 133, 105–144.
- Friedlander, J. B., & Iwaniec, H. (2005). Summation formulae for coefficients of

*L*-functions, Canad. J. Math. 57, 494–505. - Iwaniec, H., & Kowalski, E. (2004). Analytic Number Theory, American Mathematical Society, Providence.
- Richert, H. E. (1953). Über die Anzahl Abelscher Gruppen gegebener Ordnung. II., Math. Z., 58 (1), 71–84.

## Related papers

## Cite this paper

Srichan, T. (2020). A bound of sums with convolutions of Dirichlet characters. Notes on Number Theory and Discrete Mathematics, 26(1), 70-74, doi: 10.7546/nntdm.2020.26.1.70-74.