A. G. Shannon

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 1, Pages 225-229

DOI: 10.7546/nntdm.2020.26.1.225-229

**Download full paper: PDF, 528 Kb**

## Details

### Authors and affiliations

A. G. Shannon

*Warrane College
The University of New South Wales
Kensington, NSW 2033, Australia*

### Abstract

This paper extends Gaussian binomial coefficients (and so-called) Fibonomial

coefficients) with identities related to Horadam’s generalized binomial coefficients.

### Keywords

- Gaussian binomial coefficients
- Generalized Fibonacci numbers
- Fibonomial coefficients

### 2010 Mathematics Subject Classification

- 11B65
- 11B39

### References

- Alexanderson, G. L. (1974). A Fibonacci analogue of Gaussian binomial coefficients. Fibonacci Quarterly. 12 (2), 129–132.
- Andrews, G. E., & Baxter, R. J. (1987). Lattice gas generalization of the hard hexagon model. III.
*q*-trinomial coefficients. Journal of Statistical Physics. 47 (3–4), 297–330. - Andrews, G. E. (1970). A polynomial identity which implies the Rogers–Ramanujan identities. Scripta Mathematica. 28, 297–305.
- Andrews, G. E. (1974). Applications of basic hypergeometric functions. SIAM Review. 16, 441–484.
- Carlitz, L. (1947). A problem of Dickson’s. Duke Mathematical Journal. 14, 1139–1140.
- Carlitz, L. (1948).
*q*-Bernoulli numbers and polynomials. Duke Mathematical Journal. 15, 987-1000. - Carlitz, L. (1958). Expansions of
*q*-Bernoulli numbers. Duke Mathematical Journal. 25, 355–364. - Carlitz, L. (1961). Some integral equations satisfied by the complete integrals of first and second kind. Bolletino della Unione Matematica Italiana. (3) 16, 264–268.
- Carlitz, L. (1962). Generating functions for powers of certain sequences of numbers. Duke Mathematical Journal. 29, 521–537.
- Carlitz, L. (1968). A note on products of sequences. Bolletino della Unione Matematica Italiana. (4) 1, 362–365.
- Cross, J. T. (1983). The Euler
*φ*-function in the Gaussian Integers. American Mathematical Monthly. 90 (8), 518–528. - Gould, H. (1969). The bracket function and Fontene–Ward generalized binomial coefficients with application to Fibonomial coefficients. Fibonacci Quarterly. 7 (1), 23–40.
- Hoggatt, V. E, Jr, & Lind, D. A. (1968). Fibonacci and binomial properties of weighted compositions. Journal of Combinatorial Theory. 4, 121–124.
- Hoggatt, V. E. Jr. (1967). Fibonacci numbers and generalized binomial coefficients. The Fibonacci Quarterly. 5, 383–400.
- Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. The Fibonacci Quarterly. 3, 161–176.
- Horadam, A. F. (1965). Generating functions for powers of a certain generalized sequence of numbers. Duke Mathematical Journal. 32, 437–446.
- Jerbic, S. K. (1968). Fibonomial Coefficients – A Few Summation Properties. San Jose State College, San Jose, California.
- Mercier, A. (1989). Identities containing Gaussian binomial coefficients. Discrete Mathematics. 76, 67–73.

## Related papers

## Cite this paper

Shannon, A. G. (2020). Gaussian binomial coefficients. Notes on Number Theory and Discrete Mathematics, 26(1), 225-229, doi: 10.7546/nntdm.2020.26.1.225-229.