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1 Introduction 

Gaussian binomial coefficients and associated q-series have been treated in many papers in a 

variety of applications by Carlitz [5, 6, 7, 8, 10] which display some typical settings for the series, 

so is there anything more that can be said? These Gaussian numbers are different from, but have 

some analogous properties to, ‘Gaussian Integers’ properly so-called [11]. 

q-series are defined basically by 

    2

0( ) 1 1 ... 1 , 0, ( ) 1.n

nq q q q n q       (1.1) 

Arising out of these are Gaussian binomial coefficients 

(
𝑛
𝑘

)
𝑞

= {

(1 − 𝑞𝑛)(1 − 𝑞𝑛−1) … (1 − 𝑞𝑛−𝑘+1)

(1 − 𝑞)(1 − 𝑞2) … (1 − 𝑞𝑘)
, 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

 

=
[𝑛]𝑞!

[𝑘]𝑞! [𝑛 − 𝑘]𝑞!
, (𝑘 ≤ 𝑛) 

where 
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[𝑛]𝑞 = 1 + 𝑞 + 𝑞2 + ⋯ + 𝑞𝑛−1  

= {

1 − 𝑞𝑛

1 − 𝑞
, 𝑞 ≠ 1,

𝑛, 𝑞 = 1.

 

 

Mercier [18] has already developed some properties in his theorem and its corollaries.  

It is proposed here to develop some new results with generalized Fibonacci numbers

   qpbaUU nn ,;,(  [16] where p, q are arbitrary integers, and a, b are initial values.  

2 Fibonomial coefficients 

Carlitz [9] and Horadam [16] have used them in the form that follows with generating functions 

for powers of generalized Fibonacci numbers. If we formally let 
q  in the above definition, 

where  , , assumed distinct, are the roots of 02  qpxx , then  

(
𝑛

𝑘
)

𝑞
=

(1 − (
𝛽

𝛼⁄ )
𝑛

) … (1 − (
𝛽

𝛼⁄ )
𝑛−𝑘+1

)

(1 − (
𝛽

𝛼⁄ )
1

) (1 − (
𝛽

𝛼⁄ )
2

) … (1 − (
𝛽

𝛼⁄ )
𝑘

)

 

 

 = 𝛼𝑘(𝑛−𝑘)
𝑈𝑛𝑈𝑛−1 … 𝑈𝑛−𝑘+1

𝑈1𝑈2 … 𝑈𝑘
 

 

=  𝑈𝑛𝐶𝑛,𝑘𝛼𝑘(𝑛−𝑘), 
 

in which the sequence {Un} defined above, and 

 𝐶𝑛,𝑘 =
𝑈𝑛−1…𝑈𝑛−𝑘+1

𝑈1𝑈2…𝑈𝑘
. (2.1) 

The significance of the Cn,k can be seen in Hoggatt [13, 14] in which he developed properties 

for ordinary Fibonacci numbers and the Gaussian binomial coefficients, there called Fibonomial 

coefficients [12, 17]. Some of these properties were prefigured by Alexanderson [1] and Andrews 

[4].  

In this spirit we obtain 

 

Theorem 1. 

(
𝑛 − 1

𝑘
)

𝑞
+ (

𝑛 − 1
𝑘 − 1

)
𝑞

=
2 − 𝑞𝑘 − 𝑞𝑛−𝑘

1 − 𝑞𝑛
(

𝑛
𝑘

)
𝑞

. (2.2) 

Proof: 

(
𝑛 − 1

𝑘
)

𝑞
+ (

𝑛 − 1
𝑘 − 1

)
𝑞

=
(1−𝑞𝑛−1)(1−𝑞𝑛−2)…(1−𝑞𝑛−𝑘)

(1−𝑞)(1−𝑞2)…(1−𝑞𝑘)
+

(1−𝑞𝑛−1)(1−𝑞𝑛−2)…(1−𝑞𝑛−𝑘)

(1−𝑞)(1−𝑞2)…(1−𝑞𝑘−1)
  

=
(1 − 𝑞𝑛−1)(1 − 𝑞𝑛−2) … (1 − 𝑞𝑛−𝑘+1)

(1 − 𝑞)(1 − 𝑞2) … (1 − 𝑞𝑘−1)
{

1 − 𝑞𝑛−𝑘

1 − 𝑞𝑘
+ 1} 

 

which yields the desired result. (2.2) is a variation of the relatively well-known identities 
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𝑞𝑘 (
𝑛 − 1

𝑘
)

𝑞
+ (

𝑛 − 1
𝑘 − 1

)
𝑞

= (
𝑛
𝑘

)
𝑞

.  

and 

(
𝑛 − 1

𝑘
)

𝑞
+ 𝑞𝑛−𝑘 (

𝑛 − 1
𝑘 − 1

)
𝑞

= (
𝑛
𝑘

)
𝑞
.  

See, for instance Andrews [3].  

3 Connections with generalized Fibonacci numbers 

We finish with two results which extend the known formulas for these numbers, irrespective of 

their initial conditions, namely (3.1) and (3.2) below. 

 

Theorem 2. 

(
2 − 𝑞𝑘 − 𝑞𝑛−𝑘

1 − 𝑞𝑛
) 𝛼𝑛𝑈𝑛 = 𝛼𝑛−𝑘𝑈𝑛−𝑘 + 𝛼𝑘𝑈𝑘. (3.1) 

Proof: 

(
𝑛 − 1

𝑘
)

𝑞
= 𝛼𝑘(𝑛−𝑘−1)𝑈𝑛−𝑘

𝑈𝑛−1𝑈𝑛−2 … 𝑈𝑛−𝑘+1

𝑈1𝑈2 … 𝑈𝑘
 

 

= 𝑈𝑛−𝑘𝐶𝑛,𝑘𝛼𝑘(𝑛−𝑘−1) 
 

(
𝑛 − 1

𝑘 − 1
)

𝑞
= 𝛼(𝑘−1_(𝑛−𝑘)𝑈𝑘

𝑈𝑛−1𝑈𝑛−2 … 𝑈𝑛−𝑘+1

𝑈1𝑈2 … 𝑈𝑘
 

 

= 𝑈𝑘𝐶𝑛,𝑘𝛼(𝑘−1)(𝑛−𝑘)  

and the result follows after induction.  

 

Theorem 3. 

(
𝑛

𝑚
)

𝑞
= 𝑈𝑚+1𝛼𝑚 (

𝑛 − 1

𝑚
)

𝑞
− 𝑞𝑈𝑛−𝑚+1𝛼𝑛−𝑚 (

𝑛 − 1

𝑚 − 1
)

𝑞
. 

 

(3.2) 

Proof: It can readily be shown [15] that 

𝑈𝑛 = 𝑈𝑚+1𝑈𝑛−𝑚 − 𝑞𝑈𝑚𝑈𝑛−𝑚−1  

and so from Section 2 

𝑈𝑛𝐶𝑛,𝑘𝛼𝑚(𝑛−𝑚) = 𝑈𝑚+1(𝑈𝑛−𝑚𝐶𝑛,𝑘𝛼𝑚(𝑛−𝑚−1)𝛼𝑚 − 𝑞𝑈𝑛−𝑚−1(𝑈𝑚𝐶𝑛,𝑘𝛼(𝑚−1)(𝑛−𝑚)𝛼𝑛−𝑚 

and the required result comes from the use of the definition of Cn,k. This result is a generalization 

of equation (F) in [14].  
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4 Concluding comments 

There is a three-fold value in searching for elegant generalizations in number theory, namely, to 

investigate which identities are essential, to discover links with otherwise apparently unrelated 

results, and to formulate ideas for further research. Thus generalizing q-biomial coefficients to 

their multinomial analogues has provided the mathematical identities for scientific applications 

in seemingly unexpected contexts; for example, [2]. 
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