Apisit Pakapongpun

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 1, Pages 209-215

DOI: 10.7546/nntdm.2020.26.1.209-215

**Download full paper: PDF, 147 Kb**

## Details

### Authors and affiliations

Apisit Pakapongpun

*Department of Mathematics, Faculty of Science
Burapha University, Chon buri 20131, Thailand*

### Abstract

The purpose of this paper is to find the identities of Jacobsthal-like and Jacobsthal–Lucas numbers by using Binet’s formula.

### Keywords

- Fibonacci number
- Jacobsthal number
- Fibonacci-like number
- Jacobsthal–Lucas number
- Jacobsthal-like number

### 2010 Mathematics Subject Classification

- 11B39

### References

- Atanassov, K. T. (2011). Remark on Jacobsthal numbers. Part 2. Notes on Number Theory and Discrete Mathematics, 17 (2), 37–39.
- Atanassov, K. T. (2012). Short remark on Jacobsthal numbers. Notes on Number Theory and Discrete Mathematics, 18 (2), 63–64.
- Singh, B., Sikhwal, O., & Bhatnagar, S. (2011). Some Identities for Even and Odd

Fibonacci-like and Lucas Numbers, Proceedings of National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011, published in International Journal of Computer Applications, 4–6. - Yashwant, K., Singh, B., & Gupta, V. K. (2013). Identities of Common Factors of Generalized Fibonacci, Jacobsthal and Jacobsthal–Lucas Numbers, Applied Mathematics and Physics, 1 (4), 126–128.
- Horadam, F. (1996). Jacobsthal Representation Numbers. The Fibonacci Quarterly, 34 (1), 40–45.
- Singh, B., Sisodiya, K., & Ahmad, F. (2014). On the Product of k-Fibonacci Numbers and
*k*-Lucas Numbers, International Journal of Mathematics and Mathematical Science, 2014, 1–4. - Jhala, D., Rathore, G. P. S., & Singh, B. (2014). Some Identities Involing Common Factors of
*k*-Fibonacci and*k*-Lucas NUmbers, American Journal of Mathematical Analysis, 2 (3), 33–35.

## Related papers

## Cite this paper

Pakapongpun, A. (2020). Identities on the product of Jacobsthal-like and Jacobsthal–Lucas numbers. Notes on Number Theory and Discrete Mathematics, 26(1), 209-215, doi: 10.7546/nntdm.2020.26.1.209-215.