J. V. Leyendekkers and A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 13105132
Volume 20, 2014, Number 1, Pages 27—31
Download full paper: PDF, 89 Kb
Details
Authors and affiliations
J. V. Leyendekkers
Faculty of Science, The University of Sydney
NSW 2006, Australia
A. G. Shannon
Faculty of Engineering & IT, University of Technology
Sydney, NSW 2007, Australia
Abstract
The decimal expansion of the Golden Ratio is examined through the use of various properties of the Fibonacci numbers and some exponential functions.
Keywords
 Fibonacci sequence
 Lucas sequence
 Golden Ratio
AMS Classification
 11B39
 11B50
References

Atanassov, K., V. Atanassova, A. Shannon, J. Turner. New Visual Perspectives on the Fibonacci Numbers. New York: World Scientific, 2002.

Carlitz, L. A binomial Identity Arising from a Sorting Problem, SIAM Review. Vol. 6, 1964, 20–30.

Gougenbaum, A. About the Linear Sequence of Integers and that Each Term is the Sum of the Two Preceding. The Fibonacci Quarterly. Vol. 9, 1971, 277–295, 298.
 Havil, J. The Irrationals: A Story of the Numbers You Can’t Count on. Princeton & Oxford: Princeton University Press, 2012.
 Hoggatt, V. E., Jr. Fibonacci and Lucas Numbers. Boston: HoughtonMifflin, 1969.
 Leyendekkers, J. V., A. G. Shannon. 2012. On the Golden Ratio (submitted).
 Livio, M. The Golden Ratio. New York: Golden Books, 2002.
 Shannon, A.G. Some Lacunary Recurrence Relations. The Fibonacci Quarterly. Vol. 18, 1980, 73–79.

Shannon, A.G., J.V. Leyendekkers. Pythagorean Fibonacci Patterns. International Journal of Mathematical Education in Science and Technology. Vol. 43, 2012, 554–559.
Related papers
Cite this paper
APALeyendekkers, J., & Shannon, A. (2014). The decimal string of the golden ratio. Notes on Number Theory and Discrete Mathematics, 20(1), 2731.
ChicagoLeyendekkers, JV, and AG Shannon. “The Decimal String of the Golden Ratio.” Notes on Number Theory and Discrete Mathematics 20, no. 1 (2014): 2731.
MLALeyendekkers, JV, and AG Shannon. “The Decimal String of the Golden Ratio.” Notes on Number Theory and Discrete Mathematics 20.1 (2014): 2731. Print.