Generalized Hurwitz series

A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 18, 2012, Number 4, Pages 61—68
Download full paper: PDF, 99Kb

Details

Authors and affiliations

A. G. Shannon

Faculty of Engineering & IT, University of Technology
Sydney, NSW 2007, Australia

Abstract

Properties of generalized Hurwitz series are developed here in the framework of Fermatian numbers. These properties include derivatives in the Fontené–Jackson calculus which results in another solution of Ward’s Staudt–Clausen problem.

Keywords

  • Hurwitz series
  • Fermatian numbers
  • Fontené–Jackson calculus
  • Staudt–Clausen theorem
  • Bernoulli numbers
  • Umbral calculus

AMS Classification

  • 11B75
  • 11Z05
  • 11B65

References

  1. Bondarenko, Boris A., Generalized Pascal Triangles and Pyramids: Their Fractals, Graphs, and Applications. (Translated by Richard C Bollinger.) Santa Clara, CA: The Fibonacci Association, 1993.
  2. Carlitz, L., An Analogue of the von Staudt–Clausen Theorem. Duke Mathematical Journal. Vol. 3, 1937, 503–517.
  3. Carlitz, L., An Analogue of the Staudt–Clausen Theorem. Duke Mathematical Journal. Vol. 7, 1940, 62–67.
  4. Carlitz, L., A Set of Polynomials. Duke Mathematical Journal. Vol. 6, 1940, 486–504.
  5. Carlitz, L., The Coefficients of the Reciprocal of a Series. Duke Mathematical Journal. Vol. 8, 1941, 689–700
  6. Carlitz, L., Q–Bernoulli Numbers and Polynomials. Duke Mathematical Journal. Vol. 15, 1948, 987–1000.
  7. Carlitz, L., Some Properties of Hurwitz Series. Duke Mathematical Journal. Vol. 16, 1949, 285–295.
  8. Carlitz, L., A Note on Irreducibility of the Bernoulli and Euler Polynomials. Duke Mathematical Journal. Vol. 19, 1952, 475–481.
  9. Carlitz, L., A Theorem of Glaisher. Canadian Journal of Mathematics. Vol. 5, 1953, 306-316.
  10. Carlitz, L., The Schur Derivative of a Polynomial. Proceedings of the Glasgow Mathematical Association. Vol. 1, 1953, 159–163.
  11. Carlitz, L., Note on a Theorem of Glaisher. Journal of the London Mathematical Society. Vol. 28, 1953, 245–246.
  12. Carlitz, L., Extension of a Theorem of Glaisher and Some Related Results. Bulletin of the Calcutta Mathematical Society. Vol. 46, 1954, 77–80.
  13. Carlitz, L., A Degenerate Staudt–Clausen Theorem. Archiv der Mathematik. Vol. 7, 1956, 28–33.
  14. Carlitz, L., A Note on the Staudt–Clausen Theorem. American Mathematical Monthly. Vol. 64, 1957, 19–21.
  15. Carlitz, L., Criteria for Kummer’s Congruences. Acta Arithmetica. Vol. 6, 1960, 375–391.
  16. Carlitz, L., The Staudt–Clausen Theorem. Mathematics Magazine. Vol. 35, 1961, 131–146.
  17. Carlitz, L., Some Arithmetic Sums Connected with the Greatest Integer Function. Archiv der Mathematik. Vol. 12, 1961, 34–42.
  18. Carlitz, L., A Note on the Generalized Wilson’s Theorem. American Mathematical Monthly. Vol. 71, 1964, 291–293.
  19. Carlitz, L., The Highest Power of a Prime Dividing Certain Quotients. Archiv der Mathematik. Vol. 18, 1967, 153–159.
  20. Carlitz, L., Some Identities in Combinatorial Analysis. Duke Mathematical Journal. Vol. 38, 1971, 51–56.
  21. Carlitz, L., L. Moser., On Some Special Factorizations of (1 – xn)/(1 – x). Canadian Mathematical Bulletin. Vol. 9, 1966, 421–426.
  22. Cox, N., J. W. Phillips, V. E. Hoggatt, Jr., Some Universal Counterexamples. The Fibonacci Quarterly. Vol. 8, 1970, No. 3, 242–248.
  23. Dickson, L. E., History of the Theory of Numbers, Volume 1. New York: Chelsea, Ch. XVI, 1952.
  24. Feinberg, M., Fibonacci–tribonacci. The Fibonacci Quarterly. Vol. 1, 1963, No. 3, 71–74.
  25. Feinberg, M., New Slants. The Fibonacci Quarterly. Vol. 2, 1964, No. 2, 223–227.
  26. Ghanem. Manal., Some Properties of Hurwitz Series Ring. International Mathematics Forum. Vol. 6, 2011, No. 40: 1973–1981.
  27. Hoggatt, V. E. Jr., M. Bicknell, Diagonal Sums of Generalized Pascal Triangles. The Fibonacci Quarterly. Vol. 7, 1969, No. 4, 341–358.
  28. Horadam, A. F., Basic Properties of a Certain Generalised Sequence of Numbers. The Fibonacci. Quarterly. Vol. 3, 1965, No. 3, 161–176.
  29. Horadam, A. F., A. G. Shannon, Ward’s Staudt–Clausen problem. Mathematica Scandinavica. Vol. 29, 1976, 239–250.
  30. Keigher, W. F., F. L. Pritchard, Hurwitz Series as Formal Functions. Journal of Pure and Applied Algebra. Vol. 146, 2000, 291–304.
  31. Kim, T., Q–Bernoulli Numbers and Polynomials associated with Gaussian Binomial Coefficients. Russian Journal of Mathematical Physics. Vol. 15, 2008, 51–57.
  32. Riordan, J., An Introduction to Combinatorial Analysis. New York: Wiley, 1958, p. 3.
  33. Riordan, J., A Note on a q–extension of Ballot Numbers. Journal of Combinatorial Theory. Vol. 4, 1968, 191–193.
  34. Shannon, A. G., Generalized Bernoulli Polynomials and Jackson’s Calculus of Sequences. Notes on Number Theory and Discrete Mathematics, Vol. 9, 2003, No. 1, 1–6.
  35. Shannon, A. G., Some Properties of Fermatian Numbers. Notes on Number Theory and Discrete Mathematics, Vol. 10, 2004, No. 2, 25–33.
  36. Sharma, A., Q–Bernoulli and Euler Numbers of Higher Order. Duke Mathematical Journal. Vol. 25, 1958, 343–353.
  37. Vandiver, H. S., Simple Explicit Expressions for Generalized Bernoulli Numbers. Duke Mathematical Journal. Vol. 8, 1941, 575–584.
  38. Ward, M., A Calculus of Sequences. American Journal of Mathematics. Vol. 58, 1936,255–266.

Related papers

Cite this paper

APA

Shannon, A.(2012). Generalized Hurwitz series, Notes on Number Theory and Discrete Mathematics, 18(4), 61-68.

Chicago

AG Shannon, AG. “Generalized Hurwitz Series.” Notes on Number Theory and Discrete Mathematics 18, no. 4 (2012): 61-68.

MLA

Shannon, AG. “Generalized Hurwitz Series.” Notes on Number Theory and Discrete Mathematics 18.4 (2012): 61-68. Print.

Comments are closed.