Leo Betthauser, Ömür Deveci and Josh Hiller

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 27, 2021, Number 1, Pages 125—133

DOI: 10.7546/nntdm.2021.27.1.125-133

**Download full paper: PDF, 181 Kb**

## Details

### Authors and affiliations

Leo Betthauser

*Department of Mathematics, PO Box 118105, University of Florida
Gainesville, FL 32611-8105, United States
*

Ömür Deveci

*Department of Mathematics, Faculty of Science and Letters, Kafkas University
36100, Turkey
*

Josh Hiller

*Department of Mathematics and Computer Science, Adelphi University
New York, United States
*

### Abstract

We define the very general binomial matrix and find its eigendecomposition over arbitrary rings when such a decomposition is possible. Using this decomposition, we are able to compute the order of several varieties of Pascal’s matrices.

### Keywords

- Pascal’s matrix
- Binomial coefficients
- Matrix

### 2010 Mathematics Subject Classification

- 11B65
- 15A09
- 15A16

### References

- Aggarwala, R., & Lamoureux, M. P. (2002). Inverting the Pascal matrix plus one. American Mathematical Monthly, 109(4), 371–377.
- Ashrafi, A., & Gibbson, P. M. (2004). An involutory Pascal matrix. Linear Algebra and its Applications, 387, 277–286.
- Bayat, M., Asadi, M., & Khatami, Z. (2014). The linear algebra of the right justified Pascal functional matrix with three variables. Caspian Journal of Applied Science Research, 3(1), 51–58.
- Bicknell, M., & Hoggatt, V. E. (1973). Unit determinants in generalized Pascal triangles. The Fibonacci Quarterly, 11(2), 131–144.
- Brawer, R., & Pirovino, M. (1992). The linear algebra of the Pascal matrix. Linear Algebra and its Applications, 174, 13–23.
- Call, G. S., & Velleman, D. J. (1993). Pascal’s matrices. American Mathematical Monthly, 100(4), 372–376.
- Cronin, A. G., & Laffey, T. J. (2015). On a conjecture of Deveci and Karaduman. Linear Algebra and its Applications, 471, 569–574.
- Edelman, A., & Strang, G. (2004). Pascal matrices. American Mathematical Monthly, 111(3), 189–197.
- Deveci. O., & Karaduman, E., (2012). The cyclic groups via the Pascal matrices and the generalized Pascal matrices. Linear Algebra and its Applications, 437(10), 2538–2545.
- Hiller, J., (2013). A proof of two conjectures of Deveci and Karaduman. Linear Algebra and its Applications, 446, 163–165.
- Hiller, J. (2016). Old friends in unexpected places: Pascal (and other) matrices in
*GLn*(ℂ). American Mathematical Monthly, 123(2), 161–167. - Hiller, J., Vallejo, C., Betthauser, L., & Keesling, J. (2017). Characteristic patterns of cancer incidence: Epidemiological data, biological theories, and multistage models. Progress in Biophysics and Molecular Biology, 124, 41–48.
- Hoggatt, V. E., & Bicknell, M. (1976). Pascal, Catalan, and general sequence convolution arrays in a matrix, The Fibonacci Quarterly, 14(2), 135–143.
- Hoggatt, V. E., & Bicknell, M. (1976). Catalan and related sequences arising from inverses of Pascal’s Triangle Matrices, The Fibonacci Quarterly, 14(5), 395–405.
- Jameson, M. K., Minton, G., & Orrison, M. E. (2008). Borda Meets Pascal, Math Horizons, 16(1), 8–21.
- Lewis, B. (2010). Revisiting the Pascal matrix. American Mathematical Monthly, 117(1), 50–66.
- Liu, M., & Zhang, Z. (1998). An Extension of the Generalized Pascal Matrix and its Algebraic Properties. Linear Algebra and its Applications, 271, 169–177.
- Nording, C. (1951). A new theory on the cancer-inducing mechanism. British Journal of Cancer, 7(1), 68–72.
- Zhang, Z. (1997). The linear algebra of the generalized Pascal Matrix. Linear Algebra and its Applications, 250, 51–60.
- Zhang, Z., & Liu, M. (1998). An extension of the generalized pascal matrix and its algebraic properties. Linear Algebra and its Applications, 271, 169–177.
- Wang, T., & Zhang, Z. (1998). A Generalized Pascal matrix and recurrence sequences. Linear Algebra and its Applications, 283, 289–299.
- Zhang, Z., & Wang, X. (2007). A factorization of the symmetric Pascal matrix involving the Fibonacci matrix. Discrete Applied Mathematics, 155, 2371–2376.

## Related papers

## Cite this paper

Betthauser, L., Deveci, Ö., & Hiller, J. (2021). A very general binomial matrix. Notes on Number Theory and Discrete Mathematics, 27(1), 125-133, doi: 10.7546/nntdm.2021.27.1.125-133.