Application of the Laplace transform to the solution of Diophantine equations

Aldo Peretti
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 3, 1997, Number 2, Pages 75–101
Full paper (PDF, 815 Kb)


Authors and affiliations

Aldo Peretti
Facultad de Ciencia y Tecnologla
Univcrsidad del Salvador
Cordoba 1739


  1. G. HARDY and J. E. LITTLEWOOD, Some problems in ‘Partitio Numerorum’ III, Acu Math. (1922), p. 1-70.
  2. A. PERETTI, The Goldbach problem (II). Notes on Numb. Theory and Discrete Math.. Vol. 2 (1996) N* 2. p. 1-26.
  3. L. K. HUA, Additive theory of prime numbers. Amer. Math. Soc. (1965). Ch. VH. p. 78.
  4. N. NORLUND, Vorlcsungen uber Differcrucnrcchnung. Chelsea Edition (1954).
  5. Y. LUKE. The special functions and their approximations. (1969) Academic Press. Vol. 1, {43. formula (3). p. 117.
  6. G. CARR, Formulas and theorems in Pure Mathematics, Chelsea Edition, p. 546-550.
  7. E. LANDAU, Vorlesungen Uber Zahlcntheorie. Chelsea Edition, Kap. I, { 1, formulas (266) and (267). More clear exposition in:
    G. HARDY and J. E. LITTLEWOOD. Some problems of ‘Partitio Numerorum ’ (I). A neyv solution of Waring’s problem, GOtt. Nachr (1920), p. 33-54.
  8. P. BATEMAN, On the representation of a number as the sum of 3 squares. Trans. Amer. Math. Soc. 71 (1951), p. 70-101.
  9. A. PERETTI, Euler’s diophantine equation x,‘ + … + x.k = i* . Bull. Numb. Theory. Vol. XU1 (1989), p. 39-50.
  10. H. MANN. A proof of the fundamental theorem on the density of sums of sets of positive integers. Aim. of Math. (2) 43 (1942). p. 523-527.
  11. B. KVARDA and R. K1LLGROVE, Extensions of the Schnirelman density to higher dimensions. Amer. Math. Monthly 73 (1966), p. 976-979.
  12. P. ERDOS, On the representation of large integers as sums of distinct summands taken from a fixed set. Acta Arith. 7 (1961/62), p. 345-354.
  13. G. LORENTZ. Multiplicity of representations of integers by sums of elements of two given sets, J. London Math. Soc. 28 (1953), 464-467.
  14. H. ROHRBACH. Ein Beitrag iur additiven Zahlcntheorie, Math. Z. (1937). 1-30. Zbl. 15.200.
  15. P. ERDOS and W. FUCHS, On a problem of additive number theory, J. London Math. Soc. 31 (1956), p. 67-73.
  16. A. PERETTI. The Fermat equation (II). Bull. Numb. Theory. Vol. XII (1988). p. 39-55.
  17. GRADSHTEIN-RYZIK, Table of Integrals. Series and Products, Academic Press (1965).
  18. N. NIELSEN. Handbuch der Theorie der Gamma Funktion. Chelsea Ed. (1965).
    (19) G. HARDY and J. LITTLEWOOD, A new solution of Waring’s Problem, (P.N.I.) Quart. J. of Math. 48 (1919). p. 272-293.
    (20) R. BAKHOOM, Asymptotic expansions of the function Fk (x) = I e *” du , Proceedings London Math. Soc. (2) (1933). p. 83-100.

Related papers

Cite this paper

Peretti, A. (1997). Application of the Laplace transform to the solution of Diophantine equations. Notes on Number Theory and Discrete Mathematics, 3(2), 75-101.

Comments are closed.