Aldo Peretti

Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132

Volume 3, 1997, Number 1, Pages 23–34

**Full paper (PDF, 344 Kb)**

## Details

### Authors and affiliations

Aldo Peretti

*Facultad de Ciencia y Tecnologia – Universidad del Salvador
Rodriguez Peña 640
(1020) Buenos Aires, Argentina*

### Abstract

A new continued fraction is obtained for Euler constant , namely:

It is considered the possibility to prove the irrationality and transcendency of the constant by means of this expansion.

### References

- R. Ayoub: “Partial triumph or total failure?”. Math. Intelligencer, vol. 7, N° 2 (1985) p. 55-58.
- D. Bailey: “Numerical results on the transcendence of constants involving , and Euler’s constant”. Math. Comp. vol. 50, (1988) p. 275-282
- W. A. Beyer and M. S. Waterman: “Error analysis of a computation of Euler’s constant”. Math. Comp. vol. 28 (1974) p. 599-604
- W. A. Beyer and M. S. Waterman: “Decimals and partial quotients of Euler’s constant and Ln2”. Math. Comp. vol. 28 (1974) p. 667
- R. P. Brent: “Computation of the regular continued fraction for Euler’s constant”. Math. Comp. vol. 31 (1977) p. 771-777
- R. P. Brent and E. Me. Millan: “Some new algorithms for high precision computation of Euler’s constant”. Math. Comp. vol. 34 (1980) p. 305-312
- A. Froda: “La constante d’Euler est irrationelle”. Atti. Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8) 38 (1965) p. 338-344
- A. Froda: “Nouveaux criteres parametriques d’irrationalite”. C. R. Acad. Sci. Paris 261 (1965) p. 3012-3015
- J. W. Glaisher: “History of Euler’s constant”. Messenger of Math. Vol. 1 (1872) p. 25- 30
- H. W. Gould: “Some formulas for Euler’s constant”. Bull. Numb. Theory. Vol. X (1986) N° 2, p. 2-9
- Hermite-Stieltjes: Correspondance. Lettre 216, p.459, Gauthier Villars, Paris (1905).
- S. Selberg: “Bemerkung zu einer arbeit von Viggo Bran über die Riemannsche zetafunktion”. Norske Vid. Selsk. Forh. XIII N° 5 (1940), p. 17-19
- D. W. Sweeney: “On the computation of Euler’s constant”. Math. Comp. 17 (1963), p. 170-178
- O. Perron: “Die Lehre von Kettenbriichen”. 2nd. Edition, 1929. Teubner, Leipzig
- C. Brezinski: “History of Continued Fractions and Pade Approximants”. Springer Verlag. 1991
- G. Carr: “Formulas and theorems in Mathematics”. Chelsea edition.

## Related papers

## Cite this paper

Peretti, A. (1997). A new continued fraction for Euler’s constant. *Notes on Number Theory and Discrete Mathematics*, 3(1), 23-34.