Malvina Baica

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132

Volume 1, 1995, Number 3, Pages 120—134

**Download full paper: PDF, 10 Mb**

## Details

### Authors and affiliations

Malvina Baica

*Department of Mathematics and Computer Science
The University of Wisconsin Whitewater
Wisconsin, 53190*

### Abstract

The main intent in this paper is to solve Fermat’s last theorem (FLT) using the author’s modification of the Jacobi-Perron Algorithm (JPA) which holds for complex fields of any degree *n* (ACF) (defined later as Baica’s Generalized Euclidean Algorithm (BGEA)).

### Keywords

- Euclidean algorithm
- Jacobi-Perron algorithm (JPA)
- Baica’s algorithm in a complex field
- Baica’s generalized Euclidean algorithm
- Hasse-Bernstein modification of JPA

### References

- M. BAICA, An Algorithm in a complex field (ACF) and its applications to the calculation of units, Pacific J. Math. (1) 110 (1984) 21-40.
- M. BAICA, Approximation of irrationals, Internat. J. Math. Sci. (2) 8 (1985) 303-320.
- M. BAICA, Hermite’s Problem from the periodicity of (ACF)Algorithm, Bull. Numb. Theory, vol. XIV (1990) p. 57-67.
- M. BAICA, Diophantine equations and identities, Internat.J. ‘Math, and Math. Sci. vol.’ 8, no. 4(1985) 755-777.
- M. BAICA, More units from the periodicity of an Algorithm,Bull. Numb. Theory, vol. XII (1988), p. 81-89.
- M. BAICA, Halter-Koch units from the periodicity of (ACF)Algorithm. Bull. Numb. Theory, vol. XIII (1989), p. 73-79.
- M. BAICA, Hilbert’s demand for the Disclosure of units in algebraic number fields, Accepted for publication.
- M. BAICA, Pythagorean Triangles of equal areas, Internat.J. Math. Sci. (11) 4 (1988) 769-780.
- L. BERNSTEIN AND H. HASSE, Einheitenberechnung mittels des Jacobi-Perronschen Algorithmus. J. Reine. Angew. Math. 218 (1965), 51-69.
- L. BERNSTEIN, The Jacobi-Perron Algorithm, its Theory and Applications, Springer, Berlin-Heidelberg-New York, Zeit. Notes. Math. Vol. 207, 1971.
- L. BERNSTEIN, Representation of (D
^{n}— d)^{1/n}as a periodic continued fraction by Jacobi’s Algorithm, Math. Nachr. 29 (1965) 179-200. - C. H. HERMITE, Letter to C. G. Jacobi, J. f. d. Reine.Angew. Math. 40 (1939) 286.
- C. G. J. JACOBI, Allgemeine Theorie der kettenbruchaehnlichen Algorithmen, in velchen jede Zahl aus drei vorhergehenden gebildet wird, J.f.d. reine angew. Math. 69 (1969(, 29-64.
- H. LONDON and R. FINKELSTEIN, On Mordell’s Equation. Bowling Green State University Press, Bowling Green 1973.
- O. PERRON, Grundlagen flier eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann. 64 (1907), 1-76.
- O. PERRON, Ein neues Konvergenzkriterium fur Jacobi-Ketten 2. Ordnung Arch. Math. Phys. (Reine 3) 17 (1911), 204-211.

## Related papers

## Cite this paper

Baica, M. (1995). Baica’s general Euclidean algorithm (BGEA) and the solutions of Fermat’s Last Theorem. Notes on Number Theory and Discrete Mathematics, 1(3), 120-134.