Michele Elia
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132
Volume 1, 1995, Number 2, Pages 93—102
Download full paper: PDF, 5.8 Mb
Details
Authors and affiliations
Michele Elia
Dipartimento di Elettronica – Politecnico di Torino
I – 10129 Torino – Italy
Abstract
A technique akin to Polya’s counting method, is proposed for computing the distribution of the distances between vertices in semiregular spherical polytopes.
References
- A. Boole Stot, Geometrical deduction of semiregular from regular polytopes, Ver.der Koninklijke Akad. Wetensch. Amsterdam (eerstie sectie), vol.11.1, 1910.
- N.G. De Bruijn, Polya’s Theory of Counting, in Applied Combinatorial Mathematics, Ed. E.F. Beckenbach, Wiley, New York, 1964, pp.144-236.
- T. Ericson, Permutation Codes, Rapport de Recherche INRIA, Paris, n.2109, November 1993.
- W. Ledermann, Introduction to group theory, Longman, London, 1973.
- P.H. Schoute, Analytical treatment of the polytopes regularly derived from regular polytopes, Ver.der Koninklijke Akad.van Wetenschappen te Amsterdam (eertie sectie), vol.11.5, 1913.
- D. Slepian, Group codes for the Gaussian channel, BSTJ, vol.47 (1968), pp.575-602.
- Slepian, Permutation Modulation, IEEE Proc, vol.53, pp.228-236, March 1965.
Related papers
Cite this paper
Elia, M. (1995). A note on the distribution of vertex distances in semiregular polytopes. Notes on Number Theory and Discrete Mathematics, 1(2), 93-102.